www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Faltung
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Faltung

Faltung



Unter einer Faltung versteht man eine multiplikative Operation auf Objekten $ M:=O_i*O_j $


Die kleinste Einheit, die gebildet werden kann ist eine Abbildung $ O:=K\times K\rightarrow K $ z.B. mit $ c:=a*b\quad (a,b\in\IR) $


Seien $ a:=a_i $ und $ b:=b_j $ beliebige Folgen, so ist eine neue Folge $ c:=c_r $, die aus dem Produkt $ a*b $ gebildet wurde ein Faltungsprodukt.


Satz: Seien die Reihen $ \summe_i{a_i} $ und $ \summe_j{b_j} $ absolut konvergent, so konvergiert auch die Reihe $ \summe_r{c_r} $ absolut und es gilt:

$ \summe_{r=0}^{\infty}{c_r}=\left(\summe_{i=0}^{\infty}{a_i}\right)\cdot{}\left(\summe_{j=0}^{\infty}{b_j}\right) $



Faltungsintegral

Das Integral $ f(t)=f_1(t)*f_2(t)=\integral_0^t{f_1(\tau)f_2(t-\tau)\ d\tau} $ heißt Faltungungsintegral



Eigenschaft der Faltung


Kommutativität

$ f_1*f_2=f_2*f_1 $


Beweis

$ f_1(t)*f_2(t)=\integral_0^t{f_1(\tau)f_2(t-\tau)\ d\tau} $

Substitution: $ \sigma=t-\tau $

$ =\integral_0^t{f_1(t-\sigma)f_2(\sigma)\ d\sigma}=\integral_0^t{f_2(\sigma)f_1(t-\sigma)\ d\sigma}=f_2(t)*f_1(t) $



Assoziativität

$ (f_1*f_2)*f_3=f_1*(f_2*f_3) $



Beweis

$ [f_1(t)*f_2(t)]*f_3(t)=f_1(t)*[f_2(t)]*f_3(t)] $


$ g_1(u):=f_1(u)*f_2(u)=\integral_{v=0}^u{f_1(v)f_2(u-v)\ dv} $

$ g_2(t):=f_2(t)*f_3(t)=\integral_{w=0}^t{f_2(w)f_3(t-w)\ dw} $


zu zeigen: $ g_1(t)*f_3(t)=f_1(t)*g_2(t) $


$ g_1(t)*f_3(t)=\integral_0^t{g_1(u)f_3(t-u)\ du} $

$ =\integral_{u=0}^{t}\left(\integral_{v=0}^u{f_1(v)f_2(u-v)\ dv\right)\cdot{}f_3(t-u)\ du}=\integral_{u=0}^{t}\integral_{v=0}^u{f_1(v)f_2(u-v)\cdot{}f_3(t-u)\ dvdu} $

$ =\integral_{v=0}^{t}\integral_{u=v}^t{f_1(v)f_2(u-v)\cdot{}f_3(t-u)\ dudv}=\integral_{v=0}^{t}f_1(v)\left(\integral_{u=v}^t{f_2(u-v)\cdot{}f_3(t-u)\ du\right)\ dv} $

$ mit:\quad w:=u-v,\ t-u=t-v-w,\ du=dw,\ u=v\ \rightarrow\ w=0,\ u=t\ \rightarrow\ w=t-v $


$ =\integral_{v=0}^{t}f_1(v)\left(\integral_{w=0}^{t-v}{f_2(w)\cdot{}f_3(t-v-w)\ dw\right)\ dv}=\integral_{v=0}^{t}f_1(v)g_2(t-v)\ dv}=f_1(t)*g_2(t) $



Distributivität

$ f_1*(f_2+f_3)=f_1*f_2+f_1*f_3 $




Beispiele:


E-Funktion

$ e^x=\summe_{k=0}^{\infty}{\bruch{x^k}{k!}}\quad (x_i\in\IR) $


es ist: $ e^{x_1+x_2}=e^{x_1}*e^{x_2} $


wir beginnen mit der rechten Seite

Es seien die beiden Folgen: $ (a_i):=\left(\bruch{x_1^i}{i!}\right) $ und $ (b_i
j):=\left(\bruch{x_2^j}{j!}\right) $ gegeben


dann ist

$ c_r:=\summe_{i=0}^{r}{a_ib_{r-i}}\ =\ \bruch{1}{r!}\summe_{i=0}^{r}{\bruch{r!}{i!(r-i)!}\cdot{}x_1^ix_2^{r-i}}\ =\ \bruch{1}{r!}\summe_{i=0}^{r}{\vektor{ r \\ i }\cdot{}x_1^ix_2^{r-i}}=\bruch{(x_1+x_2)^r}{r!} $






Letzte Änderung: Mi 06.12.2006 um 11:45 von Herby
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]