www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - vollständige induktion
vollständige induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige induktion: Frage
Status: (Frage) beantwortet Status 
Datum: 16:36 Di 02.11.2004
Autor: SUNNY000

hi leute, hab mich jetzt mit der vollständigen induktion beschäftigt und würde ganz gerne wissen ob meine rechnung richtig ist.

Für a  [mm] \in \IR [/mm] \ {1}und alle n  [mm] \in \IN [/mm] gilt:

[mm] \summe_{i=1}^{n}a^i [/mm] = a* [mm] ((a^n-1)/(a-1)) [/mm]

IA Sei n=1

[mm] \summe_{i=1}^{1}= a*((a^1 [/mm] - 1) / (a-1))

= [mm] a^2-1/a-1 [/mm]
wIe ich das hier weiter rechnen soll, weiss ich leider nicht.

IS  [mm] \summe_{i=1}^{n+1}= a*((a^{n+1} [/mm] - 1)/(a-1))

KANN mir vielleicht jemand weiter helfen?
Denn irgendwie muss ich das ja durch vollständige induktion beweisen.


        
Bezug
vollständige induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Di 02.11.2004
Autor: Hanno

Hiho!

> $ [mm] \summe_{i=1}^{1}= a\cdot{}((a^1 [/mm] $ - 1) / (a-1)) $

Hier hast du dich einfach verrechnet. Es muss heißen: [mm] $\summe_{k=1}^{1}{a}=a\cdot\frac{a-1}{a-1}=a$. [/mm]

Schaffst du nun den Induktionsschritt?

Viel Erfolg!
Hanno

Bezug
                
Bezug
vollständige induktion: Frage
Status: (Frage) beantwortet Status 
Datum: 17:16 Di 02.11.2004
Autor: SUNNY000

ich weiß was du meinst, aber dieses a was ich vergessen habe, spielt doch keine rolle. Ich weiß nicht ob meine rechenschritte beim IS richtig sind und wie ich das am ende beweisen kann.
Gruß Stefan

Bezug
                        
Bezug
vollständige induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Di 02.11.2004
Autor: Hanno

Hallo!

Die Induktionsverankerung haben wir bereits gefunden. Nun gilt es, den Induktionsschritt zu zeigen. Ich rechne dir mal ein paar Schritte vor:
[mm] $\summe_{k=1}^{n+1}{a^k}=\summe_{k=1}^{n}{a^k}+a^{n+1}$. [/mm]
Nach Induktionsverankerung gilt nun
[mm] $=a\cdot\frac{a^n-1}{a-1}+a^{n+1}$ [/mm]

Nun musst du das a in den Zähler ziehen, diesen Ausmultiplizieren und die beiden Summanden auf gleichen Nenner bringen. Dann musst du lediglich vereinfachen und hast schon das Ergebnis. Versuch's mal.

Liebe Grüße,
Hanno

Bezug
                                
Bezug
vollständige induktion: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:26 Di 02.11.2004
Autor: SUNNY000

wären denn meine schritte jetzt richtig?

[mm] \summe_{k=1}^{n+1}a^k= \summe_{i=1}^{n}a^k [/mm] + [mm] a^{n+1} [/mm]

= a* [mm] a^{n-1} \backslash [/mm] a-1 [mm] +a^n+1 [/mm]
= [mm] a^{n+1} [/mm] - 1 [mm] \backslash [/mm] a-1 + [mm] a^{n+2} [/mm] - [mm] a^{n+1} \backslash [/mm] a-1
= [mm] a^{n+2} [/mm] - 1 [mm] \backslash [/mm] a-1

Wurde das jetzt alles bewiesen? Ich verstehe das nicht. Was habe ich denn jetzt erreicht? Woran kann ich erkennen, dass es richtig ist?

Bezug
                                        
Bezug
vollständige induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:54 Do 04.11.2004
Autor: Marc

Hallo SUNNY000,

> wären denn meine schritte jetzt richtig?
>  
> [mm]\summe_{k=1}^{n+1}a^k= \summe_{i=1}^{n}a^k[/mm] + [mm]a^{n+1} [/mm]
>  
> = a* [mm]a^{n-1} \backslash[/mm] a-1 [mm]+a^n+1 [/mm]
>  = [mm]a^{n+1}[/mm] - 1 [mm]\backslash[/mm] a-1 + [mm]a^{n+2}[/mm] - [mm]a^{n+1} \backslash[/mm]
> a-1
>  = [mm]a^{n+2}[/mm] - 1 [mm]\backslash[/mm] a-1
>  
> Wurde das jetzt alles bewiesen? Ich verstehe das nicht. Was
> habe ich denn jetzt erreicht? Woran kann ich erkennen, dass
> es richtig ist?

Ich denke, das kann niemand erkennen.

Bitte gebe dir etwas Mühe beim Aufschreiben, dann müssen wir nicht 99% der Zeit, die wir uns mit der Frage beschäftigen allein darauf verwenden, diese erstmal zu entschlüsseln.

Zum Beispiel: Die komschen Backslashes sollen wahrscheinlich Bruchstriche sein.
Aber ist mit der letzten Zeile wirklich [mm] $a^{n+2}- \bruch{1}{a}-1$ [/mm] gemeint?

Bitte schreibe Brüche mit \bruch{a+b}{d+c}, das ergibt dann den Bruch [mm] $\bruch{a+b}{d+c}$. [/mm]

Bis dann,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]