numerische integration < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:31 Mo 10.07.2006 | Autor: | Schorni |
Hallo
Ich habe morgen eine Informatik Klausur und der Prof. hat uns gefragt wie denn das Prinzip der numerischen Integration sei.
Ich gehe mal davon aus das sowas auch in der Klausur morgen kommen wird.
Evt. hat ja mal jemand was davon gehört ,und kann mir weiter helfen .
Besten Dank.
Lg SchorniIch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Wenn ihr sowas NOCH NIE gemacht habt, wäre die erste Antwort wohl sowas wie "wie bei den Untersummen / Obersummen". Du weißt ja sicherlich, wie ihr Integrale eingeführt habt, immer schön Rechtecke gezeichnet, die links oder rechts oben die Funktion berühren. Die Fläche all dieser Rechtecke zusammen ergibt dann einen Wert für das Integral.
Ein rechteck hat die Fläche $A=f(links)*Breite$
wobei f(links) der Funktionswert in der linken oberen Ecke ist.
Ich denke mal, das ist recht einfach ersichtlich. Allerdings ist das Verfahren recht ungenau, sodaß es gewisse Optimierungen gibt, und damit fängt die Seite von dem Link oben erst an.
Die einfachste Optimierung ist, keine Rechtecke, sondern Trapeze zu zeichnen. Diese berühren mit ihrer linken UND rechten oberen Ecke die Funktion, sonst sehen sie wie die Rechtecke der Untersumme aus.
Wenn du das mal zeichnest, siehst du auch, daß das genauer ist.
Die Fläche eines solchen Trapezes ist einfach [mm] $A=\bruch{f(links)+f(rechts)}{2}*Breite$
[/mm]
Die ergebnisse werden natürlich immer besser, je kleiner die Breite wird!
|
|
|
|