nochmal Formel von Ableitung < Analysis < Hochschule < Mathe < Vorhilfe
|
|
Hallo Bastiane,
> [mm]L_i(x)=\produkt_{k=0; k\not=i}^n\bruch{x-x_k}{x_i-x_k}[/mm]
>
> Nun suche ich die Ableitung von [mm]L_i(x).[/mm]
>
> Nach der Produktregel habe ich doch dann eine Summe. Und
> jeder Summand besteht aus n-1 Faktoren, die aus [mm]L_i[/mm] quasi
> übernommen werden, und der andere (damit es insgesamt n
> Faktoren sind) Faktor ist abgeleitet, das müsste doch
> [mm]\bruch{1}{x_i-x_k}[/mm] sein, oder?
>
> Und dann wäre die komplette Ableitung:
>
> [mm]L_i'(x)=\summe_{k=0}^n\bruch{1}{x_i-x_k}*\produkt_{j=0; j\not=k}^n\bruch{x-x_j}{x_i-x_j}[/mm]
In der Summe fällt der Summand weg der in der ursprünglichen Funktion nicht als Faktor auftritt.
Im Produkt fällt der Faktor weg nach dem "gerade" abgeleitet wird.
Mir ist gerade aufgefallen: Der fällt ja schon weg! Es muß also extra noch der wegfallen der in der ursprünglichen Funktion nicht auftaucht.also j [mm] \not= [/mm] i
Puh was eine Fomulierung
viele Grüße
mathemaduenn
|
|
|
|
|
Hallo Bastiane,
Formeln sind doch einfacher
[mm]L_i'(x)=\summe_{k=0;k\not=i}^n\bruch{1}{x_i-x_k}*\produkt_{j=0; j\not=k;j\not= i}^n\bruch{x-x_j}{x_i-x_j}[/mm]
Im Anfangspost hatte ich mich ohnehin etwas vertan.
Jetzt klarer?
viele Grüße
mathemaduenn
|
|
|
|