kleine polynomfrage < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Hallo nochmal u. Danke vielmals,
f(x)=3³+p*x²+3x
Die Aufgabe war:
1. Für welchen Wert von p hat f eine Nulstelle bei x=-3 ? u.
2. """""""""""""""""""""""""""" ist der Graph punktsymetrisch zum Ursprung?
Wie geht man bei der Lösung von Aufgabe 1 u. 2 vor?
Worauf zielen diese Aufgaben, auf welche Intention sollen diese Aufgaben hinauslaufen , Sinn?
Grüße
masaat
|
|
|
|
Hallo Masaat,
zu 1: Du weißt, das bei x=-3 eine Nullstellen sein soll, also setzt du erst mal x=-3 in die Funktionsgleichung ein.
f(-3)=p9-9+9
f(-3)=9p
Und weil es ja eine Nullstelle sein soll, gilt:
f(-3)=9p=0 [mm] \Rightarrow [/mm] p=0
zu 2: Die Funktion kann nicht punktsymetisch zum Koordinatenursprung sein, denn dann dürfte sie nur ungerade Exponenten enthalten. Jetzt kann bei p=0 der quadratische Teil zwar rausfliegen, aber es bleibt immernoch die 9, die den Graph ja um 9LE nach oben verschiebt, und er nicht mehr durch den Urspprung geht.
Und nun zum Sinn.
Die Fragt ist echt bescheuert! Halte dich doch nicht mit Sinnfragen auf! Dadurch blockierst du dich nur selber, und nimmst dir selber die Lust die Aufgaben zu verstehen. So eine Art Aufgaben führen dich zur höheren Mathematik. Und wenn du jetzt denkst, das du sowas in deinem späteren Beruf eh nicht brauchst, dann lass dir sagen das ich bisher noch keinen Studiengang oder Lehrberuf kennengelernt haben, indem du keine Mathe brauchst. Sogar bei der Physioterapie braucht man einen großen Teil Mathe und Physik.
In der Mathematik lernst du komplex zu denken, du lernst nicht nur geradlinig an Probleme ranzugehen, du lernst eine bessere Denkweise!
Also, halte dich nicht mit solchen Fragen auf, und mach deine Hausaufgaben.
Hast du zu der Aufgabe vorher eigentlich schon mal was selber probiert?
Viele Grüße, und viel Erfolg!
//Sara
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:11 Do 09.03.2006 | Autor: | Bastiane |
Hallo Sara!
> Und nun zum Sinn.
> Die Fragt ist echt bescheuert! Halte dich doch nicht mit
> Sinnfragen auf! Dadurch blockierst du dich nur selber, und
> nimmst dir selber die Lust die Aufgaben zu verstehen. So
> eine Art Aufgaben führen dich zur höheren Mathematik. Und
> wenn du jetzt denkst, das du sowas in deinem späteren Beruf
> eh nicht brauchst, dann lass dir sagen das ich bisher noch
> keinen Studiengang oder Lehrberuf kennengelernt haben,
> indem du keine Mathe brauchst. Sogar bei der Physioterapie
> braucht man einen großen Teil Mathe und Physik.
> In der Mathematik lernst du komplex zu denken, du lernst
> nicht nur geradlinig an Probleme ranzugehen, du lernst eine
> bessere Denkweise!
Ich finde das nicht ganz so ok, wie hart du Masaat da behandelst. Ich glaube nicht, dass er (oder sie?) nach dem "Sinn" gefragt hat, weil er keine Lust hat, "sinnlose" Aufgaben zu machen, sondern um die Aufgabe eher besser zu verstehen oder sich für eine Klausur dann eben auf eine bestimmte Richtung von Aufgaben vorbereiten zu können. Wenn du dir die (beiden vor kurzem gestellten) anderen Aufgaben von ihm ansiehst, wirst du sehen, dass er mit Sicherheit Spaß an der Mathematik hat.
> Also, halte dich nicht mit solchen Fragen auf, und mach
> deine Hausaufgaben.
> Hast du zu der Aufgabe vorher eigentlich schon mal was
> selber probiert?
Wie gesagt, sieh dir seine anderen Aufgaben an, bei den beiden letzten hatte er sich bei der einen nur irgendwo verrechnet und bei der anderen lediglich einen kleinen Teil vergessen. Aber er hat als "Aufgabe" nur seine Rechnungen zur Kontrolle gepostet, also durchaus viel Eigenleistung erbracht. Da kann es doch auch mal passieren, dass er hier gerade mal keinen Ansatz oder so hat.
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:14 Do 09.03.2006 | Autor: | kampfsocke |
So hart wie ich es getippst habe sollte es gar nicht klingen.
Ich entschuldige mich für meine harten Worte!
Viel Erfolg noch, und liebe Grüße,
Sara
|
|
|
|
|
Hallo,
Aufgabe 1, sicher hätte ich selber dran denken können.
Aufgabe 2 war für welchen wert von p ist der Graph punktsymmetrisch zum Ursprung ?
(Wie geht man diese Lösung an ?)
f(x)=3x³+p*x²+3x
Zum Sinn, unglücklich ausgedrückt.
Ich meinte eher, auf was soll man dabei aufmerksam werden, bei der
auseinandersetzung mit der Aufgabe ?
Grüße
masaat
|
|
|
|
|
Hallo masaat!
> Aufgabe 2 war für welchen wert von p ist der Graph
> punktsymmetrisch zum Ursprung ?
> (Wie geht man diese Lösung an ?)
Allgemein gilt für eine Funktion, die punktsymmetrisch zum Ursprung ist (und zwar für jedes $x \ [mm] \in [/mm] \ [mm] D_x$):
[/mm]
$f(-x) \ = \ - f(x)$
Bei ganzrationalen Funktionen -wie Deine Funktion hier- lässt sich dies beschränken auf folgenden Satz:
Eine ganzrationale Funktion ist punktsymmetrisch zum Ursprung, wenn ausschließlich ungerade Potenzen von $x_$ auftreten, also $x \ = \ [mm] x^1$, $x^3$ [/mm] usw. (Dabei wird ein evtl. auftretendes Absolutglied wie eine gerade Potenz betrachtet.)
Anders herum formuliert: es darf bei dieser Punktsymmetrie keine gerade Potenz von $x_$ vorkommen (bei ganzrationalen Funktionen).
> f(x)=3x³+p*x²+3x
Für welches $p_$ fällt also nun die gerade Potenz [mm] $x^{\red{2}}$ [/mm] weg?
> Ich meinte eher, auf was soll man dabei aufmerksam werden,
> bei der auseinandersetzung mit der Aufgabe ?
Hier geht es grundsätzlich darum, möglichst viele Eigenschaften von Funktionskurven herauszufinden. Und bei auftretenden Symmetrien ist dann häufig nur der halbe Rechenaufwand erforderlich, wenn ich mir z.B. dann nur eine Hälfte der Funktion betrachte.
Gruß vom
Roadrunner
|
|
|
|