www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Exponentialfunktion
Exponentialfunktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Di 07.06.2005
Autor: Anne1988

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt

hey...

Hab da ma ne aufagabe, die ich net wirklich kann...

Also, gib die Exponentialfunktion  [mm] x-->c*a^x [/mm]  an, deren Schaubild durch die gegeben Punkte P (0/6) und Q (5/2) geht.

        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Di 07.06.2005
Autor: Bastiane

Hallo!

> Also, gib die Exponentialfunktion  [mm]x-->c*a^x[/mm]  an, deren
> Schaubild durch die gegeben Punkte P (0/6) und Q (5/2)
> geht.

Hast du denn gar keine eigenen Ansätze? So schwierig ist das gar nicht.
Also, du sollst eine Funktion finden, die so aussieht:
[mm] f(x)=ca^x [/mm]
Nun weißt du aber, dass der Funktionswert von 0 gleich 6 sein soll. Den Funktionswert von 0 kannst du aber berechnen:
[mm] f(0)=c*a^0=c*1=c [/mm] (denn [mm] a^0=1) [/mm]
Da f(0)=6 laut Aufgabenstellung (das geht aus dem Punkt P hervor), folgt daraus: c=6.

Mit dem zweiten Punkt geht das ganz genauso:
[mm] f(5)=c*a^5=6*a^5 [/mm]
Da f(5)=2 laut Aufgabenstellung, folgt:
[mm] 6a^5=2 \gdw a^5=\bruch{1}{3} \gdw a=\wurzel[5]{\bruch{1}{3}} \approx [/mm] 0,8

Und schon bist du fertig.

Alles klar? Sonst frag bitte nach. :-)

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Exponentialfunktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:03 Mo 09.10.2006
Autor: Quaeck

Sorry das ich das Thema jetzt nochmal aufwühle, aber ich beschäftige mich zu dem Zeitpunkt auch mit der Exponentialfunktion: [mm]f(x)=c * a^x[/mm]

Beim Lesen dieses Threads hat sich mir folgende Frage ergeben:
Warum ist von dieser Funktion:
Zitat:
[mm] f(0)=c\cdot{}a^0=c\cdot{}1=c [/mm]
[mm]a^0=1[/mm] ? Das verstehe ich nicht. Ich wäre euch dankbar wenn mir das mal Jemand erklären könnte.




Bezug
                        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Mo 09.10.2006
Autor: MyChaOS

Dies gehört zur definiton von Potenzen

[mm] $a^0 [/mm] = 1$ für $a [mm] \not= [/mm] 0$

Sollte allerdings Basiswissen sein das der Lehrer in der ersten Stunde über Potenzen bringt.
wäre übrigens gut wenn man seinen Mathematische Hintergrund angibt, hier wars jetzt ned nötig, könnte aber bei schwereren Fragen von Vorteil sein den zu kennen, kannst im Profil ändern.

Bezug
                                
Bezug
Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Mo 09.10.2006
Autor: Quaeck

Ja für manchne ist es Basiswissen, doch ich habe es im Unterricht nicht beigebracht bekommen. Ich habe meine Mathe-Hefte durchwühlt und auch das Buch durchforstet, doch leider ist das mir nicht klar geworden.
Trotzdem danke..

So peinlich es auch klingt, ich bin schon in der 12.Klasse/Stufe..

Bezug
                                        
Bezug
Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Mo 09.10.2006
Autor: Fabian

Hallo Quaeck,

schau mal []hier

Viele Grüße

Fabian

Bezug
                                                
Bezug
Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:40 Mo 09.10.2006
Autor: Quaeck

Hi Fabian,
Dankeschön ,dass du das für mich rausgesucht hast. =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]