www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Analysis
Analysis < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Mi 20.01.2021
Autor: Mathemurmel

Aufgabe
Gegeben ist die Funktion h mit

y = h(x) = sin(x) [mm] \* [/mm] e^cos(x)              x ∊ [0;2π]

a) Untersuchen Sie die Funktion h auf Nullstellen! Ermitteln Sie die lokalen Extrema von h sowie deren Art!

a) Ich habe Probleme bei der notwendigen Bedingung für Extrema:

h'(x) = e^cos(x) * (cos(x) - [mm] (sin(x))^2) [/mm]

Notwendige Bedingung:  h'(x) = 0

e^cos(x) * (cos(x) - [mm] (sin(x))^2) [/mm] = 0       | Nullproduktregel

e^cos(x) ungleich null für alle x

cos(x) - [mm] (sin(x))^2 [/mm] = 0    (1)

da weiß ich nicht weiter, wie ich das rechnen soll.

Ich kann noch anwenden:

1 = [mm] (sin(x))^2 [/mm] + [mm] (cos(x))^2 [/mm]        => ich ersetze (1) durch:

0 = cos(x)  - 1 + [mm] (cos(x))^2 [/mm]

aber das hilft mir auch nicht weiter.



        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Mi 20.01.2021
Autor: Gonozal_IX

Hiho,

> 0 = cos(x)  - 1 + [mm](cos(x))^2[/mm]

[ok]

> aber das hilft mir auch nicht weiter.

Nicht?
Also ich erkenne da doch stark eine quadratische Gleichung in [mm] $\cos(x)$. [/mm]
Substituiere also [mm] $z=\cos(x)$, [/mm] löse die quadratische Gleichung und resubstituiere.

Gruß,
Gono

Bezug
                
Bezug
Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:02 Do 21.01.2021
Autor: Mathemurmel

0 = [mm] (cos(x))^2 [/mm] + cos(x) - 1   Subst.:  z = cos(x)
0 = [mm] z^2 [/mm] + z - 1
TR liefert:  z1 = 0,6180339887      z2= -1,618033989

cos(x1) = z1 = 0,6180339887  | cos^-1          
x1 = 0,9045568944

cos(x2) = z2 = -1,618033989  | cos^-1
nicht lösbar

Im Graphen sehe ich aber, dass es ein Maximum bei ca. 0,9 gibt und ein Minimum bei ca. 5,4.
Wo kriege ich das Minimum her?


Bezug
                        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 06:38 Do 21.01.2021
Autor: statler

Guten Morgen!

> 0 = [mm](cos(x))^2[/mm] + cos(x) - 1   Subst.:  z = cos(x)
>  0 = [mm]z^2[/mm] + z - 1
>  TR liefert:  z1 = 0,6180339887      z2= -1,618033989
>  
> cos(x1) = z1 = 0,6180339887  | cos^-1          
> x1 = 0,9045568944

Dein TR ist nicht so schlau, er weiß nicht, daß in [0, [mm] 2$\pi$] [/mm] dann auch [mm] 2$\pi$ [/mm] - x1 den gleichen cos-Wert hat. Zumindest sagt er es dir nicht.

> cos(x2) = z2 = -1,618033989  | cos^-1
>  nicht lösbar
>  
> Im Graphen sehe ich aber, dass es ein Maximum bei ca. 0,9
> gibt und ein Minimum bei ca. 5,4.
>  Wo kriege ich das Minimum her?

s. o.

Gruß Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]