www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
symmetrisch
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

symmetrisch

Symmetrie bei Funktionen


Schule

Funktionen können

  • achsensymmetrisch zu einer Parallelen zur y-Achse mit x=a oder
  • punktsymmetrisch zu einem Punkt P(a|b) sein

Damit die Gerade x=a eine vertikale Symmetrieachse ist, muss gelten:


f(a+x)=f(a-x)

Für eine Punktsymmetrie zum Punkt P(a|b) muss gelten:


f(a+x)+f(a-x)=2*b

Ist die y-Achse x=0 Symmetrieachse oder der Ursprung (0|0) Symmetriepunkt,
vereinfachen sich die obigen Bedingungen zu:


f(-x) = f(x)  für Achsensymmetrie zu x=0


f(-x) = -f(x) für Punktsymmetrie zu (0|0)


Beispiele.

1.) Die Funktion $ f: \IR \to \IR $ definiert durch $ f(x):=2x^3+3x $ ist ungerade. Es gilt nämlich für alle $ x \in \IR $:
$ f(-x)=2\cdot{}(-x)^3+3\cdot{}(-x)=2\cdot{}(-x^3)-3x=-2x^3-3x=-(2x^3+3x)=-f(x) $.


2.) Die Funktion $ f: $ $ [-3;3] \cap \IZ $   $ \to $   $ [-1000;1000] $ definiert durch $ f(x):=3x^4+5x^2+2 $ ist gerade. Es gilt nämlich für alle $ x \in [-3;3] $:
$ f(-x)=3\cdot{}(-x)^4+5\cdot{}(-x)^2+2=3x^4+5x^2+2=f(x) $, und damit insbesondere:
$ f(-x)=f(x) $ $ \forall x \in ([-3;3] \cap \IZ) $.


3.) Die Funktion $ f: \IR \to \IR $ definiert durch $ f(x):=x^2+2x $ ist weder gerade noch ungerade.

Es gilt nämlich einerseits:
$ f(-x)=(-x)^2+2\cdot{}(-x)=x^2-2x\stackrel{i.A.}{\not=}x^2+2x=f(x) $
(etwa weil $ f(-1)=(-1)^2+2\cdot{}(-1)=1-2=-1\not=3=1^2+2\cdot{}1=f(1) $) (d.h. $ f $ ist nicht gerade),

und andererseits:
$ f(-x)=(-x)^2+2\cdot{}(-x)=x^2-2x\stackrel{i.A.}{\not=}-x^2-2x=-(x^2+2x)=-f(x) $
(etwa weil $ f(-1)=(-1)^2+2\cdot{}(-1)=1-2=-1\not=-3=-(1^2+2\cdot{}1)=-f(1) $ (d.h. $ f $ ist nicht ungerade).


4.) Ist $ M\subset \IR $ eine Menge mit der Eigenschaft, dass für alle $ x \in M $ auch $ -x \in M $ gilt,
und ist $ f $ eine Funktion mit dem Definitionsbereich $ M $,
die sowohl gerade als auch ungerade ist, so ist $ f $ auf $ M $ die Nullfunktion.
Denn:
Es gilt für alle $ x \in M $:
$ f(x)\stackrel{f \,\, gerade}{=}f(-x)\stackrel{f \,\, ungerade}{=}-f(x) $
$ \gdw $
$ 2\cdot{}f(x)=0 $
$ \gdw $
$ f(x)=0 $.   $ \Box $


5.) Sei $ M $ eine Menge mit der Eigenschaft, dass für alle $ x \in M $ auch $ -x \in M $ gelte. Sei ferner $ 0 \in M $.
Dann gilt:
Ist $ g $ eine ungerade Funktion, so gilt $ g(0)=0 $.
Denn:
$ g(0)\stackrel{weil\,\,\,0=-0}{=}g(-0)\stackrel{g\,\,
ungerade}{=}-g(0) $
$ \gdw $
$ 2\cdot{}g(0)=0 $
$ \gdw $
$ g(0)=0 $.    $ \Box $


Universität


Beispiele.

1.) Die Funktion $ f: \IR \to \IR $ definiert durch $ f(x):=2x^3+3x $ ist ungerade. Es gilt nämlich für alle $ x \in \IR $:
$ f(-x)=2\cdot{}(-x)^3+3\cdot{}(-x)=2\cdot{}(-x^3)-3x=-2x^3-3x=-(2x^3+3x)=-f(x) $.

2.) Die Funktion $ f: $ $ [-3;3] \cap \IZ $   $ \to $   $ [-1000;1000] $ definiert durch $ f(x):=3x^4+5x^2+2 $ ist gerade. Es gilt nämlich für alle $ x \in [-3;3] $:
$ f(-x)=3\cdot{}(-x)^4+5\cdot{}(-x)^2+2=3x^4+5x^2+2=f(x) $, und damit insbesondere:
$ f(-x)=f(x) $ $ \forall x \in ([-3;3] \cap \IZ) $.

3.) Die Funktion $ f: \IR \to \IR $ definiert durch $ f(x):=x^2+2x $ ist weder gerade noch ungerade.

Es gilt nämlich einerseits:
$ f(-x)=(-x)^2+2\cdot{}(-x)=x^2-2x\stackrel{i.A.}{\not=}x^2+2x=f(x) $
(etwa weil $ f(-1)=(-1)^2+2\cdot{}(-1)=1-2=-1\not=3=1^2+2\cdot{}1=f(1) $) (d.h. $ f $ ist nicht gerade),


und andererseits:
$ f(-x)=(-x)^2+2\cdot{}(-x)=x^2-2x\stackrel{i.A.}{\not=}-x^2-2x=-(x^2+2x)=-f(x) $
(etwa weil $ f(-1)=(-1)^2+2\cdot{}(-1)=1-2=-1\not=-3=-(1^2+2\cdot{}1)=-f(1) $ (d.h. $ f $ ist nicht ungerade).

4.) Ist $ M\subset \IR $ eine Menge mit der Eigenschaft, dass für alle $ x \in M $ auch $ -x \in M $ gilt,
und ist $ f $ eine Funktion mit dem Definitionsbereich $ M $,
die sowohl gerade als auch ungerade ist, so ist $ f $ auf $ M $ die Nullfunktion.
Denn:
Es gilt für alle $ x \in M $:
$ f(x)\stackrel{f \,\, gerade}{=}f(-x)\stackrel{f \,\, ungerade}{=}-f(x) $
$ \gdw $
$ 2\cdot{}f(x)=0 $
$ \gdw $
$ f(x)=0 $.   $ \Box $

5.) Sei $ M $ eine Menge mit der Eigenschaft, dass für alle $ x \in M $ auch $ -x \in M $ gelte. Sei ferner $ 0 \in M $.
Dann gilt:
Ist $ g $ eine ungerade Funktion, so gilt $ g(0)=0 $.
Denn:
$ g(0)\stackrel{weil\,\,\,0=-0}{=}g(-0)\stackrel{g\,\,
ungerade}{=}-g(0) $
$ \gdw $
$ 2\cdot{}g(0)=0 $
$ \gdw $
$ g(0)=0 $.    $ \Box $


Universität


Punktsymmetrie zum Ursprung (ungerade Funktion) bzw.


Achsensymmetrie zur y-Achse (gerade Funktion) einer reellwertigen Funktion

Sei $ M \subset \IR $ eine Menge mit der Eigenschaft, dass für alle $ x \in M $ auch $ -x \in M $ gelte.

Sei $ f $ eine reellwertige Funktion mit dem Definitionsbereich $ M $.

Die Funktion $ f $ heißt:

- punktsymmetrisch zum Ursprung (oder ungerade) (auf $ M $), falls für alle $ x \in M $ die Gleichung $ f(-x)=-f(x) $ gilt

- achsensymmetrisch zur $ y $-Achse (oder gerade) (auf $ M $), falls für alle $ x \in M $ die Gleichung $ f(-x)=f(x) $ gilt.


Beispiele.

1.) Die Funktion $ f: \IR \to \IR $ definiert durch $ f(x):=2x^3+3x $ ist ungerade. Es gilt nämlich für alle $ x \in \IR $:
$ f(-x)=2\cdot{}(-x)^3+3\cdot{}(-x)=2\cdot{}(-x^3)-3x=-2x^3-3x=-(2x^3+3x)=-f(x) $.

2.) Die Funktion $ f: $ $ [-3;3] \cap \IZ $   $ \to $   $ [-1000;1000] $ definiert durch $ f(x):=3x^4+5x^2+2 $ ist gerade. Es gilt nämlich für alle $ x \in [-3;3] $:
$ f(-x)=3\cdot{}(-x)^4+5\cdot{}(-x)^2+2=3x^4+5x^2+2=f(x) $, und damit insbesondere:
$ f(-x)=f(x) $ $ \forall x \in ([-3;3] \cap \IZ) $.

3.) Die Funktion $ f: \IR \to \IR $ definiert durch $ f(x):=x^2+2x $ ist weder gerade noch ungerade.

Es gilt nämlich einerseits:
$ f(-x)=(-x)^2+2\cdot{}(-x)=x^2-2x\stackrel{i.A.}{\not=}x^2+2x=f(x) $
(etwa weil $ f(-1)=(-1)^2+2\cdot{}(-1)=1-2=-1\not=3=1^2+2\cdot{}1=f(1) $) (d.h. $ f $ ist nicht gerade),


und andererseits:
$ f(-x)=(-x)^2+2\cdot{}(-x)=x^2-2x\stackrel{i.A.}{\not=}-x^2-2x=-(x^2+2x)=-f(x) $
(etwa weil $ f(-1)=(-1)^2+2\cdot{}(-1)=1-2=-1\not=-3=-(1^2+2\cdot{}1)=-f(1) $ (d.h. $ f $ ist nicht ungerade).

4.) Ist $ M\subset \IR $ eine Menge mit der Eigenschaft, dass für alle $ x \in M $ auch $ -x \in M $ gilt,
und ist $ f $ eine Funktion mit dem Definitionsbereich $ M $,
die sowohl gerade als auch ungerade ist, so ist $ f $ auf $ M $ die Nullfunktion.
Denn:
Es gilt für alle $ x \in M $:
$ f(x)\stackrel{f \,\, gerade}{=}f(-x)\stackrel{f \,\, ungerade}{=}-f(x) $
$ \gdw $
$ 2\cdot{}f(x)=0 $
$ \gdw $
$ f(x)=0 $.   $ \Box $

5.) Sei $ M $ eine Menge mit der Eigenschaft, dass für alle $ x \in M $ auch $ -x \in M $ gelte. Sei ferner $ 0 \in M $.
Dann gilt:
Ist $ g $ eine ungerade Funktion, so gilt $ g(0)=0 $.
Denn:
$ g(0)\stackrel{weil\,\,\,0=-0}{=}g(-0)\stackrel{g\,\,
ungerade}{=}-g(0) $
$ \gdw $
$ 2\cdot{}g(0)=0 $
$ \gdw $
$ g(0)=0 $.    $ \Box $





Symmetrie bei ebenen Figuren symmetrischen Figuren



TODO



Symmetrie bei Gruppen

symmetrische Gruppen

TODO

Erstellt: Fr 22.10.2004 von informix
Letzte Änderung: Fr 03.11.2006 um 23:41 von informix
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]