KommutativgesetzKommutativgesetz:
In einer Summe oder einem Produkt darf man Summanden bzw. Faktoren vertauschen, wenn man die Vorzeichen der Summanden mitnimmt.


Kommutativgesetz der Addition:
In einer Summe darf man die Summanden vertauschen, wenn man dabei die Vorzeichen mitnimmt.

Beispiele:
a) 
b) 
c) 
d) 
Man sieht also, dass man innerhalb einer Summe die einzelnen Summanden vertauschen kann, wenn man das Vorzeichen mitnimmt. Dabei können die Summanden durchaus auch verschiedene Terme sein.
Kommutativgesetz der Multiplikation:
In einem Produkt darf man die Faktoren vertauschen.

Beispiele:
a) 
b) 
c) 
d) 
Bei den Beispielen ist aufgefallen, das das Vorzeichen an beliebiger Stelle im Produkt stehen kann. Da man auch als schreiben kann und dann für wieder das Kommutativgesetz gilt.
siehe auch: Assoziativgesetz, Distributivgesetz, Rechengesetze
|