www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Moivre-Formel
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Moivre-Formel

Moivre-Formel


Sowohl hohe Potenzen $ z^n $ als auch Wurzeln $ \wurzel[n]{z} $ von komplexen Zahlen $ z \ = \ x+y\cdot{}i $ (mit $ x,y\in\IR $) können mit Hilfe der "Moivre-Formel" berechnet werden.





$ z^n \ = \ r^n\cdot{}\left[\cos\left(n\cdot{}\varphi\right)+\sin\left(n\cdot{}\varphi\right)\cdot{}i\right] $



$ \wurzel[n]{z} \ = \ \wurzel[n]{r}\cdot{}\left[\cos\left(\bruch{\varphi+k\cdot{}2\pi}{n}\right)+\sin\left(\bruch{\varphi+k\cdot{}2\pi}{n}\right)\cdot{}i\right]\quad \text{mit}\quad k \ = \ 0 \ ... \ (n-1) $




Dabei gilt hier für $ z \ = \ x+i\cdot{}y $ :

$ |z|\ =\ r \ = \ \wurzel{x^2+y^2} $   sowie   $ \tan(\varphi) \ = \ \bruch{y}{x} $

Für den Winkel $ \varphi $ ist auch noch der jeweilige Quadrant in der Gauß'schen Zahlenebene zu berücksichtigen (siehe dazu auch: komplexe Zahlen)



Beispiele

$ z^n=a\quad mit\quad a\in\IC $



Beipiel 1


Berechnung aller Lösungen von $ z^3=1 $


Zuerst brauchen wir für die Zahl $ a=\green{x}+\blue{y}i $ eine Darstellung der Form $ a=r\cdot{}(\cos(\red{\varphi})+\sin(\red{\varphi})\cdot{}i) $

$ r $ ist der Betrag der komplexen Zahl a und errechnet sich durch $ |a|=r=\wurzel{\green{x}^2+\blue{y}^2} $

Unsere Zahl $ a=\green{1}+\blue{0}i $ hat also den Betrag $ |a|=\wurzel{1^2+0^2}=1 $


Der Winkel $ \varphi $ berechnet sich aus $ \tan(\varphi)=\bruch{\blue{y}}{\green{x}} $ (Anm: wobei hier immer darauf geachtet werden muss, in welchem Quadranten unsere komplexe Zahl zu finden ist - d.h. er muss ggf. mit dem Wert  $ \pm\pi $  ergänzt werden).

Hier ist $ \tan{\varphi}=\bruch{\blue{0}}{\green{1}}=0\quad \Rightarrow\quad \varphi=\arctan(0)=\red{0} $


Damit habe wir schon alles, was wir für die Moivre-Formel benötigen

$ \wurzel[n]{z} \ = \ \wurzel[n]{r}\cdot{}\left[\cos\left(\bruch{\varphi+k\cdot{}2\pi}{n}\right)+\sin\left(\bruch{\varphi+k\cdot{}2\pi}{n}\right)\cdot{}i\right]\quad \text{mit}\quad k \ = \ 0 \ ... \ (n-1) $



Rechnungen:

$ z_1=\wurzel[3]{1}\cdot{}\left[\underbrace{\cos\left(\bruch{\red{0}+0\cdot{}2\pi}{3}\right)}_{=1}+\underbrace{\sin\left(\bruch{\red{0}+0\cdot{}2\pi}{3}\right)}_{=0}\cdot{}i\right]=1 $

$ z_2=\wurzel[3]{1}\cdot{}\left[\underbrace{\cos\left(\bruch{\red{0}+1\cdot{}2\pi}{3}\right)}_{=-\bruch{1}{2}}+\underbrace{\sin\left(\bruch{\red{0}+1\cdot{}2\pi}{3}\right)}_{=\bruch{\wurzel{3}}{2}}\cdot{}i\right]=-\bruch{1}{2}+\bruch{\wurzel{3}}{2}\cdot{}i $

$ z_3=\wurzel[3]{1}\cdot{}\left[\underbrace{\cos\left(\bruch{\red{0}+2\cdot{}2\pi}{3}\right)}_{=-\bruch{1}{2}}+\underbrace{\sin\left(\bruch{\red{0}+2\cdot{}2\pi}{3}\right)}_{=-\bruch{\wurzel{3}}{2}}\cdot{}i\right]=-\bruch{1}{2}-\bruch{\wurzel{3}}{2}\cdot{}i $







Beispiel 2


Berechnung aller Lösungen von $ z^4=-5-26i $


Zuerst brauchen wir für die Zahl $ a=\green{x}+\blue{y}i $ eine Darstellung der Form $ a=r\cdot{}(\cos(\red{\varphi})+\sin(\red{\varphi})\cdot{}i) $

$ r $ ist der Betrag der komplexen Zahl a und errechnet sich durch $ |a|=r=\wurzel{\green{x}^2+\blue{y}^2} $

Unsere Zahl $ a=\green{-5}+\blue{-26}i $ hat also den Betrag $ |a|=\wurzel{(-5)^2+(-26)^2}=\sqrt{701} $


Der Winkel $ \varphi $ berechnet sich aus $ \tan(\varphi)=\bruch{\blue{y}}{\green{x}} $ (Anm: wobei hier immer darauf geachtet werden muss, in welchem Quadranten unsere komplexe Zahl zu finden ist - d.h. er muss ggf. mit dem Wert  $ \pm\pi $  ergänzt werden). Wir befinden uns im 3. Quadranten und benötigen daher die Erweiterung mit $ \pi $, um auf den Hauptwert zu kommen.

Hier ist $ \tan{(\varphi+\pi)}=\bruch{\blue{-26}}{\green{-5}}\quad \Rightarrow\quad \varphi=\arctan\left(\frac{-26}{-5}\right)-\pi\approx\red{-1,76} $


Damit habe wir schon alles, was wir für die Moivre-Formel benötigen


$ \wurzel[n]{z} \ = \ \wurzel[n]{r}\cdot{}\left[\cos\left(\bruch{\varphi+k\cdot{}2\pi}{n}\right)+\sin\left(\bruch{\varphi+k\cdot{}2\pi}{n}\right)\cdot{}i\right]\quad \text{mit}\quad k \ = \ 0 \ ... \ (n-1) $



Rechnungen:

Mit $ \sqrt[4]{\sqrt{k}}=\sqrt[8]{k} $ folgen u.a. Lösungen


$ z_1\approx\wurzel[8]{701}\cdot{}\left[\cos\left(\bruch{\red{-1,76}+0\cdot{}2\pi}{4}\right)}+\sin\left(\bruch{\red{-1,76}+0\cdot{}2\pi}{4}\right)}\cdot{}i\right]\approx 2,052-0,966\cdot{}i $

$ z_2\approx\wurzel[8]{701}\cdot{}\left[\cos\left(\bruch{\red{-1,76}+1\cdot{}2\pi}{4}\right)}+\sin\left(\bruch{\red{-1,76}+1\cdot{}2\pi}{4}\right)}\cdot{}i\right]\approx 0,966+2,052\cdot{}i $

$ z_3\approx\wurzel[8]{701}\cdot{}\left[\cos\left(\bruch{\red{-1,76}+2\cdot{}2\pi}{4}\right)}+\sin\left(\bruch{\red{-1,76}+2\cdot{}2\pi}{4}\right)}\cdot{}i\right]\approx -2,052+0,966\cdot{}i $

$ z_4\approx\wurzel[8]{701}\cdot{}\left[\cos\left(\bruch{\red{-1,76}+3\cdot{}2\pi}{4}\right)}+\sin\left(\bruch{\red{-1,76}+3\cdot{}2\pi}{4}\right)}\cdot{}i\right]\approx -0,966-2,052\cdot{}i $








Erstellt: Mi 11.06.2008 von Loddar
Letzte Änderung: So 25.05.2014 um 15:55 von Herby
Weitere Autoren: Lustique
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]