www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - zweimalige integration
zweimalige integration < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zweimalige integration: Rechenschritt in Musterlösung
Status: (Frage) beantwortet Status 
Datum: 13:29 Do 26.07.2018
Autor: fonten

Aufgabe
[mm] k_p(\phi) [/mm] = [mm] k_0(1+ a\bruch{\phi}{\pi}) [/mm]
Man erhält mit
[mm] \bruch{1}{\rho^2} \bruch{d}{d\phi}[k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)] [/mm]
das Potential durch zweimalige unbestimmte Integration zu
[mm] \Phi(\phi)= \bruch{C \pi}{k_0 a} [/mm] ln (1+ [mm] \bruch{a}{\pi} \phi) [/mm] +D

Hallo,
In einer Musterlösung verstehe ich den obigen Rechenschritt nicht.
Ich hätte jetzt bei der ersten Integration nur die Ableitung "weggestrichen" und eine Konstante addiert:
[mm] \bruch{1}{\rho^2} ([k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)] [/mm] +C)

Bei der zweiten Integration sieht es dann so aus, als ob man die partielle Integration anwenden könnte
[mm] \integral{f(x)g'(x) dx} [/mm] = f(x)g(x)- [mm] \integral{f'(x)g(x) dx} [/mm]
[mm] \bruch{1}{\rho^2} \integral{k_p(\phi)\Phi'(\phi) +C d\phi} [/mm] = [mm] \bruch{1}{\rho^2} \vektor{ k_p(\phi)\Phi(\phi)- \integral{k_p'(\phi)\Phi(\phi) d\phi}+ C\phi +D} [/mm]
So komme ich mit dem Integral über [mm] \Phi(\phi) [/mm] aber nicht weiter.

Wie gehen die beiden Integrationsschritte nacheinander?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Grüße
fonten

        
Bezug
zweimalige integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Do 26.07.2018
Autor: Fulla


> [mm]k_p(\phi)[/mm] = [mm]k_0(1+ a\bruch{\phi}{\pi})[/mm]
> Man erhält mit
> [mm]\bruch{1}{\rho^2} \bruch{d}{d\phi}[k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)][/mm]

>

> das Potential durch zweimalige unbestimmte Integration zu
> [mm]\Phi(\phi)= \bruch{C \pi}{k_0 a}[/mm] ln (1+ [mm]\bruch{a}{\pi} \phi)[/mm]
> +D
> Hallo,
> In einer Musterlösung verstehe ich den obigen
> Rechenschritt nicht.
> Ich hätte jetzt bei der ersten Integration nur die
> Ableitung "weggestrichen" und eine Konstante addiert:
> [mm]\bruch{1}{\rho^2} ([k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)][/mm]
> +C)

>

> Bei der zweiten Integration sieht es dann so aus, als ob
> man die partielle Integration anwenden könnte
> [mm]\integral{f(x)g'(x) dx}[/mm] = f(x)g(x)- [mm]\integral{f'(x)g(x) dx}[/mm]

>

> [mm]\bruch{1}{\rho^2} \integral{k_p(\phi)\Phi'(\phi) +C d\phi}[/mm]
> = [mm]\bruch{1}{\rho^2} \vektor{ k_p(\phi)\Phi(\phi)- \integral{k_p'(\phi)\Phi(\phi) d\phi}+ C\phi +D}[/mm]

>

> So komme ich mit dem Integral über [mm]\Phi(\phi)[/mm] aber nicht
> weiter.

>

> Wie gehen die beiden Integrationsschritte nacheinander?


Hallo fonten,

du brauchst eine Gleichung, die du zweimal integrierst. Ich vermute mal, dass es
    [mm]\bruch{1}{\rho^2} \bruch{d}{d\phi}[k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)]=0[/mm]
heißen soll... Löse das nach [mm]\Phi(\phi)[/mm] auf (und setze unterwegs die Definition von [mm]k_p(\phi)[/mm] ein)...

Lieben Gruß,
Fulla

Bezug
                
Bezug
zweimalige integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:56 Do 26.07.2018
Autor: fonten

Hallo Fulla,
danke für die schnelle Antwort!
Ich glaube, den Abtippfehler habe ich gemacht, weil das auch mein Denkfehler war.

Ich habe jetzt im ersten Schritt wie vorhin beschrieben integriert, dann das Ganze nach [mm] \bruch{d}{d\phi}\Phi(\phi) [/mm] umgestellt.

[mm] \bruch{d}{d\phi} \Phi(\phi) [/mm] = - c [mm] \rho^2 [/mm] * [mm] \bruch{1}{k_p(\phi)} [/mm]

Wenn ich jetzt das [mm] k_p(\phi) [/mm] einsetze und integriere:

[mm] \integral \bruch{d}{d\phi} \Phi(\phi) [/mm] = - c [mm] \rho^2 [/mm] * [mm] \integral \bruch{1}{k_0(1+a\bruch{\phi}{\pi})} [/mm]

Damit ich den Nenner beim Integrieren zum Logarithmus machen kann, erweitere ich mit [mm] \bruch{\bruch{a}{pi}}{\bruch{a}{pi}} [/mm] und bekomme das gewünschte Ergebnis

beste Grüße
fonten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]