www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - zweimal stetig differenzierbar
zweimal stetig differenzierbar < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zweimal stetig differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Fr 23.07.2010
Autor: melisa1

Aufgabe
Bestimmen sie alle zweimal stetig differenzierbaren Funktionen f: [mm] \IR [/mm] --> [mm] \IR, [/mm] für welche f'(t)=f(t) gilt.

Hinweis: Betrachten sie g(t):=e^-t f(t) und differenzieren sie.

Hallo,


ich habe einmal [mm] f(t)=e^t [/mm] denn die Ableitung stimmt mit der Funktion überein und [mm] e^t [/mm] ist stetig

Und dann betrachte ich noch den Hinweis:

g(t):=e^-t [mm] f(t)=e^{-t}*e^t [/mm]

denn [mm] f'(t)=-e^{-t}*e^t+e^{-t}*e^t=e^t(-e^{-t}*e^t) [/mm]


und ab hier komme ich nicht weiter :S


Lg Melisa

        
Bezug
zweimal stetig differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Fr 23.07.2010
Autor: fred97


> Bestimmen sie alle zweimal stetig differenzierbaren
> Funktionen f: [mm]\IR[/mm] --> [mm]\IR,[/mm] für welche f'(t)=f(t) gilt.
>  
> Hinweis: Betrachten sie g(t):=e^-t f(t) und differenzieren
> sie.
>  Hallo,
>  
>
> ich habe einmal [mm]f(t)=e^t[/mm] denn die Ableitung stimmt mit der
> Funktion überein und [mm]e^t[/mm] ist stetig


Damit weißt Du schon mal, dass [mm] e^t [/mm] die gewünschte Eigenschaft hat.

>  
> Und dann betrachte ich noch den Hinweis:
>  
> g(t):=e^-t [mm]f(t)=e^{-t}*e^t[/mm]


Was machst Du da ?  Du sollst folgendermaßen vorgehen:  sei f eine Funktion mit f'(t)=f(t)  für alle t  (einmal differenzierbar ist völlig ausreichend !). Jetzt sollst Du herauskitzeln, wie dann f notwendigerweise aussehen muß. Dazu der Hinweis:    betrachte

               $g(t):= [mm] \bruch{f(t)}{e^t}$ [/mm]

Jetzt Du:


1. Was ist g'  ?

2. Was kannst Du aus 1. folgern ?

3. Wie sieht f aus ?

FRED

>  
> denn [mm]f'(t)=-e^{-t}*e^t+e^{-t}*e^t=e^t(-e^{-t}*e^t)[/mm]
>  
>
> und ab hier komme ich nicht weiter :S
>  
>
> Lg Melisa


Bezug
                
Bezug
zweimal stetig differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Fr 23.07.2010
Autor: melisa1

Hallo.


für g'(t) habe ich [mm] g'(t)=\bruch{f'(t)-f(t)}{e^t} [/mm]

Aus 1 weiss ich das [mm] e^t [/mm] differenzierbar und stetig ist. Kann ich jetzt hier für [mm] f(t)=e^t [/mm] schreiben (weil wir das bei der 1 hatten)? Dann haette ich aber g'(t)=0 und dann waere g'(t) nicht identisch mıt g(t).


Lg Melisa

Bezug
                        
Bezug
zweimal stetig differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Fr 23.07.2010
Autor: fred97


> Hallo.
>  
>
> für g'(t) habe ich [mm]g'(t)=\bruch{f'(t)-f(t)}{e^t}[/mm]

Ja, und weil f'=f ist , ist g'(t) = 0  für jedes t

>  
> Aus 1 weiss ich das [mm]e^t[/mm] differenzierbar und stetig ist.
> Kann ich jetzt hier für [mm]f(t)=e^t[/mm] schreiben (weil wir das
> bei der 1 hatten)?


Was soll das ? Ich hab Dir doch oben erklärt worum es geht !

> Dann haette ich aber g'(t)=0 und dann
> waere g'(t) nicht identisch mıt g(t).


Wer verlangt das ? Niemand.  

Wir haben:  g'(t) = für jedes t [mm] \in \IR. [/mm] Somit ist g auf [mm] \IR [/mm] konstant. Es gibt also ein c [mm] \in \IR [/mm] mit:

                       $g(t)=c$  für jedes t.

Das zieht nach sich:   $f(t) = [mm] ce^t$ [/mm] für jedes t [mm] \in \IR [/mm]

FERTIG

FRED

>  
>
> Lg Melisa


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]