www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - vollständig=abgeschlossen
vollständig=abgeschlossen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständig=abgeschlossen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Mo 23.10.2006
Autor: TimBuktu

Hallo!

Eine Teilmenge eines metrischen Raumes ist abgeschlossen, falls der Grenzwert jeder konvergenten Folge mit Werten aus M wiederum in M liegt.

Ein metrischer Raum heißt vollständig, wenn jede Cauchy-Folge in ihm konvergiert.

Ist das nicht dasselbe? Der einzige Grund warum Cauchyfolgen nicht konvergieren könnten wäre doch, dass der Grenzwert nicht in der Menge liegt...

Ich habe diese Frage nirgends anders gestellt und bedanke mich sehr für Reaktionen. Gruß

        
Bezug
vollständig=abgeschlossen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Di 24.10.2006
Autor: banachella

Hallo TimBuktu,

der Unterschied zwischen den beiden Begriffen liegt eher darin, auf was sie angewendet werden. Vollständigkeit ist eine Eigenschaft des metrischen Raumes $(X,d)$. Bei Abgeschlossenheit geht es um das Verhältnis einer Teilmenge [mm] $M\subseteq [/mm] X$ zum metrischen Raum. Deshalb sagt man auch "$M$ ist abgeschlossen in $(X,d)$".
Ein kleines Beispiel: [mm] $(\IQ,|.|)$ [/mm] ist nicht vollständig. [mm] $\IQ$ [/mm] ist in [mm] $(\IR,|.|)$ [/mm] nicht abgeschlossen. Aber: [mm] $\IQ$ [/mm] ist in [mm] $(\IQ,|.|)$ [/mm] abgeschlossen.

Sind dir die Begriffe jetzt klarer?

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]