www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - vollstämdige Induktion
vollstämdige Induktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollstämdige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Di 14.09.2004
Autor: Jaykop

Hallo,

Folgende Aufgabe soll gelöst werden;
Beweisen sie über vollständige Induktion:

[mm] \sum_{k=1}^{n} k(k+1) = \bruch{n(n+1) (n+2)}{3} [/mm]

Ich habe dann folgendes gamacht:

1. Induktionsanfang n=1

zu zeigen: [mm] A(1) [/mm]
[mm] \sum_{k=1}^{1}k(k+1) = \bruch{1(1+1) (1+2)}{3} = 1(1+1) = 2[/mm]


Beweis:
[mm] \sum_{k=1}^{1} k(k+1) = 1(1+1) = 2 \Box [/mm]

2. Induktionsschritt
Vorraussetzung: [mm] A(n) [/mm] gilt

[mm] \sum_{k=1}^{n} k(k+1) = \bruch{n(n+1) (n+2)}{3} [/mm]

Behauptung: [mm] A(n+1) [/mm]

[mm] \sum_{k=1}^{n+1} k(k+1) = \bruch{(n+1) [(n+1)+1] [(n+1)+2)]}{3} [/mm]

Beweis:

[mm] \sum_{k=1}^{n+1} k(k+1) = \sum_{k=1}^{n} k(k+1) +(n+1)[(n+1)+1)] [/mm]

nach vorraussetzung:

[mm] =\bruch{n(n+1)(n+2)}{3} + (n+1)[(n+1)+1)] [/mm]

[mm] =\bruch{3\left\{n(n+1)(n+2) + (n+1)[(n+1)+1]\right\}}{3} [/mm]

jetzt komme ich nicht weiter...
hab ich mich vertan?

Vielen Dank

        
Bezug
vollstämdige Induktion: vollständige Induktion
Status: (Antwort) fertig Status 
Datum: 22:33 Di 14.09.2004
Autor: Paulus

Hallo Jaykop

> Hallo,
>  
> Folgende Aufgabe soll gelöst werden;
>  Beweisen sie über vollständige Induktion:
>  
> [mm]\sum_{k=1}^{n} k(k+1) = \bruch{n(n+1) (n+2)}{3}[/mm]
>  
> Ich habe dann folgendes gamacht:
>  
> 1. Induktionsanfang n=1
>  
> zu zeigen: [mm]A(1)[/mm]
>  [mm]\sum_{k=1}^{1}k(k+1) = \bruch{1(1+1) (1+2)}{3} = 1(1+1) = 2[/mm]
>  
>
>
> Beweis:
>  [mm]\sum_{k=1}^{1} k(k+1) = 1(1+1) = 2 \Box[/mm]
>  
> 2. Induktionsschritt
>  Vorraussetzung: [mm]A(n)[/mm] gilt
>  
> [mm]\sum_{k=1}^{n} k(k+1) = \bruch{n(n+1) (n+2)}{3}[/mm]
>  
>
> Behauptung: [mm]A(n+1)[/mm]
>  
> [mm]\sum_{k=1}^{n+1} k(k+1) = \bruch{(n+1) [(n+1)+1] [(n+1)+2)]}{3}[/mm]
>  
>

[ok] Da würde ich aber noch weiter vereinfachen:

$ [mm] \bruch{(n+1) [(n+1)+1] [(n+1)+2)]}{3} [/mm] =  [mm] \bruch{(n+1) (n+2)(n+3)}{3}$ [/mm]

> Beweis:
>  
> [mm]\sum_{k=1}^{n+1} k(k+1) = \sum_{k=1}^{n} k(k+1) +(n+1)[(n+1)+1)][/mm]
>  
>
> nach vorraussetzung:
>  
> [mm][mm]=\bruch{n(n+1)(n+2)}{3}[/mm] + (n+1)[(n+1)+1)] [mm][/mm] [/mm]

[mm][mm]=\bruch{3\left\{n(n+1)(n+2) + (n+1)[(n+1)+1]\right\}}{3} [/mm] [/mm]
Ja, hier wolltest du offensichtlich gleichnamig machen. Das ist dir aber misslungen ;-)

Da hättest du doch nur den 2. Term mit 3 erweitern müssen

Ich empfehle aber ganz generell, nach Möglichkeit auszuklammern:

[mm] $\bruch{n(n+1)(n+2)}{3} [/mm] + (n+1)[(n+1)+1]$

Etwas vereinfachen:

[mm] $\bruch{n(n+1)(n+2)}{3} [/mm] + (n+1)(n+2)$

Da kann man doch $(n+1)$ und $(n+2)$ ausklammern:

[mm] $\bruch{n(n+1)(n+2)}{3} [/mm] + [mm] (n+1)(n+2)=(n+1)(n+2)(\bruch{n}{3}+1)$ [/mm]

Und dann wirds ganz einfach:

[mm] $(n+1)(n+2)(\bruch{n}{3}+1)=(n+1)(n+2)*\bruch{n+3}{3}$ [/mm]


Und so weiter.

Alles klar?

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]