www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - vollst. Induktion
vollst. Induktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollst. Induktion: Induktionsbeweis
Status: (Frage) beantwortet Status 
Datum: 20:39 So 29.10.2006
Autor: ednahubertus

Aufgabe
Beweisen Sie, dass für alle natürliche Zahlen n gilt:
A)  [mm] \summe_{i=1}^{n} [/mm] j³ = 1/4n²(n+1)²
B)  [mm] \summe_{i=1}^{n}(2j-1)²= [/mm] 1/3n(2n-1)(2n+1)




Die Überprüfung durch Einsetzen mit 1 ergab, dass es wahre Aussagen sind.
wir wissen, dass der Beweis durch (n+1) erfolgen muss. Während wir die rechte Seite hinbekommen, haben wir auf der linken Seite umso größere Probleme diese mit (n+1) darzustellen.

A)  [mm] \summe_{i=1}^{n} [/mm] j³??? = 1/4(n+1)²(n+2)²

B)  [mm] \summe_{i=1}^{n}(2j-1)²????= [/mm] 1/3(n+1)(2n)(2n+2)

wer kann und bei der Beweisführung helfen insbesondere (auf der linken Seite)?


        
Bezug
vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 So 29.10.2006
Autor: maybe.


> Beweisen Sie, dass für alle natürliche Zahlen n gilt:
>  A)  [mm]\summe_{i=1}^{n}[/mm] j³ = 1/4n²(n+1)²


also ich zeig euch mal an A wie das ungefähr geht :

also erstmal muss die summe über j laufen und nicht über i sonst macht es ja kein sinn...
also:

[mm]\summe_{j=1}^{n}[/mm] j³ = 1/4n²(n+1)²

na gut für einen induktionsbeweis brauchen wir jetzt einen induktionsanfang und einen induktionsschritt!
erstmal nenn ich unsere gleichung jetzt mal A(n):

A(n): "[mm]\summe_{j=1}^{n}[/mm] j³ = 1/4n²(n+1)²"


INDUKTIONSANFANG:

das hattet ihr ja schon gemacht. also:

A(1): [mm] 1^{3}=1/4*1^{1}(1+1)^{2}=1 [/mm] ist offensichtlich wahr.

INDUKTIONSSCHRITT:

ihr müsst zeigen dass aus A(n) A(n+1) folgt.
also A(n) [mm] \Rightarrow [/mm] A(n+1)

Das heisst ihr müsst UNTER DER ANNAHME, dass A(n) gilt A(n+1) beweisen.

Das heisst jetzt für uns:
Annahme : A(n) ist wahr
wir denken uns jetzt wir haben unsere gleichung schon bewiesen und

[mm]\summe_{j=1}^{n}[/mm] j³ = 1/4n²(n+1)² ist wahr.

jetzt müssen wir das ganze aber für n+1 zeigen. also wir müssen A(n+1) beweisen:

schreiben wir es erst mal hin:

A(n+1) : [mm]\summe_{j=1}^{n+1}[/mm] j³ = 1/4(n+1)²(n+1+1)²

(ich hab überall für n, n+1 eingesetzt.)

vereinfacht:

A(n+1) : [mm]\summe_{j=1}^{n+1}[/mm] j³ = 1/4(n+1)²(n+2)²

na gut was kann uns das helfen ?

erstmal das summenzeichen loswerden:


A(n+1) : [mm] 1^{3}+2^{3}+...+(n+1)^{3} [/mm] = 1/4(n+1)²(n+2)²


da  steht doch :

A(n+1) : [mm] [1^{3}+2^{3}+...+n^{3}]+(n+1)^{3} [/mm] = 1/4(n+1)²(n+2)²

und die eckige klammer kennen wir doch schon!!!

also nochmal als summenzeichen:

[mm]\summe_{j=1}^{n}[/mm] j³  [mm] +(n+1)^{3}= [/mm] 1/4(n+1)²(n+2)²

na und für das summenzeichen setzen wir jetzt unseren term ein nach der gleichung A(n):


[mm] 1/4n²(n+1)²+(n+1)^{3}= [/mm] 1/4(n+1)²(n+2)²

na und jetzt ? jetzt müssen wir nur noch zeigen, dass die gleichung wahr ist.
(auf beiden seiten das selbe steht):

das schafft ihr jetzt oder ??




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]