www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - unzerlegbar folgt nicht prim
unzerlegbar folgt nicht prim < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unzerlegbar folgt nicht prim: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 So 06.11.2011
Autor: briddi

Aufgabe
Unzerlegbare Elemente müssen nicht prim sein.

Hallo,
ich versuche gerade die Vorlesung nachzuarbeiten und komme hier leider nicht weiter. Als Beweis dieser Aussage wird lediglich das "Standardbeispiel" angeführt:
In [mm] \IZ[\wurzel{-5}] [/mm] ist [mm] 6=2*3=(1+\wurzel{-5}) *(1-\wurzel{-5}) [/mm]

Ich verstehe, dass man die 6 auf diese beiden Weisen darstellen kann, aber wieso ist das ein Beweis für die Aussage?

Danke,
briddi

        
Bezug
unzerlegbar folgt nicht prim: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 So 06.11.2011
Autor: felixf

Moin briddi!

>  ich versuche gerade die Vorlesung nachzuarbeiten und komme
> hier leider nicht weiter. Als Beweis dieser Aussage wird
> lediglich das "Standardbeispiel" angeführt:
> In [mm]\IZ[\wurzel{-5}][/mm] ist [mm]6=2*3=(1+\wurzel{-5}) *(1-\wurzel{-5})[/mm]
>  
> Ich verstehe, dass man die 6 auf diese beiden Weisen
> darstellen kann, aber wieso ist das ein Beweis für die
> Aussage?

Du kannst zeigen, dass 2, 3, $1 + [mm] \sqrt{-5}$, [/mm] $1 - [mm] \sqrt{-5}$ [/mm] irreduzibel und paarweise nicht assoziiert sind.

Wenn eins davon prim wär, sagen wir mal 2, dann gilt ja $2 [mm] \mid [/mm] 6 = (1 + [mm] \sqrt{-5}) [/mm] (1 - [mm] \sqrt{-5})$. [/mm] Jedoch kann 2 keinen der beiden Faktoren $1 + [mm] \sqrt{-5}$ [/mm] und $1 - [mm] \sqrt{-5}$ [/mm] teilen (da sie alle irreduzibel und paarweise nicht assoziiert sind).

Damit folgt dann, dass 2, 3, $1 + [mm] \sqrt{-5}$ [/mm] und $1 - [mm] \sqrt{-5}$ [/mm] alle nicht prim sind, jedoch irreduzibel.

LG Felix


Bezug
                
Bezug
unzerlegbar folgt nicht prim: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Di 08.11.2011
Autor: briddi

Danke, hab ich jetzt verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]