www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - umformung
umformung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 So 14.09.2008
Autor: sie-nuss

Hi alle,

ich hab Probleme mit zwei Umformungen:

Erstens:

P [mm] \{-\bruch{\varepsilon}{2+\varepsilon}X \le Y-X \le \bruch{\varepsilon}{2}X\} \ge [/mm] P [mm] \{ |Y-X| \le \bruch{\varepsilon}{3}X\} [/mm]

Wieso ist das so, dass die Wahrscheinlichkeit kleiner ist wenn man den Betrag nimmt, und wo kommt das [mm] \bruch{\varepsilon}{3} [/mm] am Ende her?

Zweitens:

Wenn [mm] m\ge37\varepsilon^{-2}n^{2} [/mm] und [mm] 0<\varepsilon<1 [/mm] dann gilt [mm] (1+\bruch{n}{m})^{n}-1 \le \bruch{\varepsilon^{2}}{36} [/mm]


Ich wär total dankbar wenn mir das jemand erklären könnte :)

Viele Grüße und vielen Dank!
sie-nuss




        
Bezug
umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 So 14.09.2008
Autor: Somebody


> Hi alle,
>
> ich hab Probleme mit zwei Umformungen:
>  
> Erstens:
>  
> P [mm]\{-\bruch{\varepsilon}{2+\varepsilon}X \le Y-X \le \bruch{\varepsilon}{2}X\} \red{\ge}[/mm] P[mm]\{ |Y-X| \le \bruch{\varepsilon}{3}X\}[/mm]
>  
> Wieso ist das so, dass die Wahrscheinlichkeit kleiner ist
> wenn man den Betrag nimmt, und wo kommt das
> [mm]\bruch{\varepsilon}{3}[/mm] am Ende her?

Ich gehe einmal von [mm] $X\geq [/mm] 0$ und [mm] $\varepsilon \in [/mm] ]0;1]$ aus. Dann gilt doch, wegen [mm] $\blue{-\frac{\varepsilon}{2+\varepsilon}X}\leq -\frac{\varepsilon}{2+1}X=\red{-\frac{\varepsilon}{3}X}$ [/mm] und [mm] $\blue{\frac{\varepsilon}{3}X}< \red{\frac{\varepsilon}{2}X}$, [/mm] dass [mm] $\blue{[-\varepsilon/(\varepsilon+2);\varepsilon/2]}\;\supseteq \; \red{[-\varepsilon/3;\varepsilon/3]}$ [/mm] und daher:

[mm]\{\blue{-\bruch{\varepsilon}{2+\varepsilon}X} \le Y-X \le \blue{\bruch{\varepsilon}{2}X}\}\; \supseteq\; \{\red{-\bruch{\varepsilon}{3}X}\leq Y-X\leq \red{\bruch{\varepsilon}{3}X}\}\;=\;\{|Y-X|\leq \bruch{\varepsilon}{3}X\}[/mm]

woraus die entsprechende Ungleichung für die Wahrscheinlichkeiten dieser Ereignisse folgt.

>  
> Zweitens:
>  
> Wenn [mm]m\blue{\ge}37\varepsilon^{-2}n^{2}[/mm] und [mm]0<\varepsilon<1[/mm] dann
> gilt [mm](1+\bruch{n}{m})^{n}-1 \red{\le} \bruch{\varepsilon^{2}}{36}[/mm]

Verstehe ich im Moment auch nicht. Ich hätte eher gedacht, dass man die []Bernoullische Ungleichung angewandt auf [mm] $(1+\bruch{n}{m})^n$ [/mm] so einsetzen könnte:

[mm](1+\bruch{n}{m})^{n}-1 \; \red{\leq} \; 1+n\cdot \frac{n}{m}-1 \; \blue{\leq} \; n\cdot \frac{n}{37\varepsilon^{-2}n^{2}} \;=\; \frac{\varepsilon^2}{37}\;<\;\frac{\varepsilon^2}{36}[/mm]


Aber, wie Du siehst, ist hier die Abschätzung anders herum als in Deiner Fragestellung. Effektiv kann man leicht Gegenbeispiele zu Deiner Ungleichung angeben. Etwa [mm] $\varepsilon [/mm] := 0.5$, $n := 2$ und $m := [mm] 37\cdot \varepsilon^{-2}n^2$. [/mm]

Bezug
                
Bezug
umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Di 16.09.2008
Autor: sie-nuss

Hallo somebody,

vielen Dank für die Antwort. Ich hab nicht verstanden, warum du sagst , die zweite Umformung hast du irgendwie anders gelöst als in der Fragestellung. Es stimmt doch alles...! oder?

Also vielen vielen Dank für die Hilfe!

Grüße,

sie-nuss

Bezug
                        
Bezug
umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:12 Mi 17.09.2008
Autor: Somebody


> Hallo somebody,
>
> vielen Dank für die Antwort. Ich hab nicht verstanden,
> warum du sagst , die zweite Umformung hast du irgendwie
> anders gelöst als in der Fragestellung. Es stimmt doch
> alles...! oder?

Ich scheine in der Tat aus irgend einem Grunde verwirrt gewesen zu sein. Ich hätte schwören können, das Ungleichheitszeichen sei andersherum gerichtet gewesen. - Na, umso besser, wenn sich für Dich alles in Wohlgefallen aufgelöst hat.

Bezug
                                
Bezug
umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Mi 17.09.2008
Autor: sie-nuss

--genau! also vielen Dank nochmal!

sie-nuss

Bezug
                
Bezug
umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:34 Do 30.10.2008
Autor: sie-nuss

Hallo,

ich hab doch noch ne Frage: Bernoulli sagt doch [mm] (1+x)^n \ge(1+xn). [/mm] Aber so wies aussieht hast du doch diese Ungleichung mit kleinergleich benutzt oder???

WIe immer freue ich mich über helfende Antworten :)

Grüße!

sie-nuss

Bezug
                        
Bezug
umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Do 30.10.2008
Autor: angela.h.b.


> ich hab doch noch ne Frage: Bernoulli sagt doch [mm](1+x)^n \ge(1+xn).[/mm]
> Aber so wies aussieht hast du doch diese Ungleichung mit
> kleinergleich benutzt oder???

Hallo,

ja, das scheint mir wirklich ein Fehler zu sein.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]