www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - top. Raum kompakt.
top. Raum kompakt. < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

top. Raum kompakt.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:51 So 19.10.2014
Autor: Peter_123

Aufgabe
Sei $ (X, [mm] \le)$ [/mm] eine wohlgeordnete Menge mit einem größten Element. Sei T die Ordnungstopologie auf $ (X, [mm] \le)$ [/mm] - zeige, dass (X,T) kompakt ist.

Hallo,

Hab leider wenig Ansätze dazu... eventuell per Widerspruch: Also angenommen man hat eine Überdeckung durch offene Intervalle die keine endliche Teilüberdeckung besitzt?

Wüsste aber auch nicht wie ich das sauber beweisen sollte.

Habt ihr eventuell Ideen?

Vielen Dank und Lg

Peter_123

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
top. Raum kompakt.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 21.10.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]