textaufgabe < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Guten Abend!
Ich brauche eure Hilfe bei der Aufgabe:
Das Flugzeug startet bei D(50|-18|0) in Richtung C(-14|46|32).
Nach 2 Minuten ändert sich der Kurs um 90°. Wo befindet sich das Flugzeug nach 4 Minuten vom Start? (100meter pro sekunde)
Geradengleichung aufstellen:
[mm] g:\vec{x}= \vektor{50 \\ -18 \\ 0} [/mm] + r [mm] \vektor{-64 \\ 64\\ -32}
[/mm]
..nach 2 Minuten:
[mm] g:\vec{x}= \vektor{50 \\ -18 \\ 0} [/mm] + 120* [mm] \vektor{-64 \\ 64\\ -32}
[/mm]
Wie muss ich nun fortsetzen?
Vielen Dank im Voraus!
Gruß,
Muellermilch
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:35 Mi 02.11.2011 | Autor: | chrisno |
> Das Flugzeug startet bei D(50|-18|0) in Richtung
> C(-14|46|32).
> Nach 2 Minuten ändert sich der Kurs um 90°. Wo befindet
> sich das Flugzeug nach 4 Minuten vom Start? (100meter pro
> sekunde)
>
> Geradengleichung aufstellen:
> [mm]g:\vec{x}= \vektor{-14 \\ 46 \\ 31}[/mm] + r [mm]\vektor{64 \\ 64\\ -32}[/mm]
Für mich passt das nicht zusammen. Der Start soll doch bei [mm] $\vektor{50 \\ -18 \\ 0}$ [/mm] erfolgen.
Mir fehlen die Einheiten. Ich nehme mal an, dass es km bei den Ortskoordinaten sind.
Wenn die Geschwindigkeit 100m/s beträgt, dann kann man daraus 6 km/min machen. Dann kann man die Einheiten auch weglassen, wenn man weiß, was man tut.
Mit [mm]g:\vec{x(t)}= \vektor{50 \\ -18 \\ 0} + 6 \cdot t \cdot \vektor{64 \\ 64\\ -32}[/mm]
ist dann schon mal etwas geschafft. Nur der Richtungsvektor muss noch aufgeräumt werden. Wenn t größer wird, also die Zeit voranschreitet, dann entfernt sich das Flugzeug von C. Also stimmt das Vorzeichen nicht. Auch muss er noch normiert werden, also durch die eigene Länge geteilt werden, damit er die Länge 1 hat. Dann klappt das mit der 6 für die 6 km/min und Du kannst den Standort nach 2 Minuten ausrechnen.
Anschließend musst Du eine Meinung haben, was mit einer 90° Kursänderung gemeint ist. Da kann es verschiedene Interpretationen geben.
|
|
|
|
|
> > Das Flugzeug startet bei D(50|-18|0) in Richtung
> > C(-14|46|32).
> > Nach 2 Minuten ändert sich der Kurs um 90°. Wo
> befindet
> > sich das Flugzeug nach 4 Minuten vom Start? (100meter pro
> > sekunde)
> >
> > Geradengleichung aufstellen:
> > [mm]g:\vec{x}= \vektor{-14 \\ 46 \\ 31}[/mm] + r [mm]\vektor{64 \\ -64\\ -32}[/mm]
>
> Für mich passt das nicht zusammen. Der Start soll doch bei
> [mm]\vektor{50 \\ -18 \\ 0}[/mm] erfolgen.
> Mir fehlen die Einheiten. Ich nehme mal an, dass es km bei
> den Ortskoordinaten sind.
Tut mir leid, ja die Einheit soll km sein. Bzw eine Einheit entspricht 1 km.
> Wenn die Geschwindigkeit 100m/s beträgt, dann kann man
> daraus 6 km/min machen. Dann kann man die Einheiten auch
> weglassen, wenn man weiß, was man tut.
> Mit [mm]g:\vec{x(t)}= \vektor{50 \\ -18 \\ 0} + 6 \cdot t \cdot \vektor{64 \\ 64\\ -32}[/mm]
>
> ist dann schon mal etwas geschafft. Nur der Richtungsvektor
> muss noch aufgeräumt werden. Wenn t größer wird, also
> die Zeit voranschreitet, dann entfernt sich das Flugzeug
> von C. Also stimmt das Vorzeichen nicht. Auch muss er noch
> normiert werden, also durch die eigene Länge geteilt
> werden, damit er die Länge 1 hat. Dann klappt das mit der
> 6 für die 6 km/min und Du kannst den Standort nach 2
> Minuten ausrechnen.
> Anschließend musst Du eine Meinung haben, was mit einer
> 90° Kursänderung gemeint ist. Da kann es verschiedene
> Interpretationen geben.
Hm. das versteh ich nicht ganz.
Kann ich nicht einfach 120 sekunden nehmen anstatt 6km/min?
Die Aufgabe ist so gestellt :/ Der Kurs ändert sich einfach allgemein nach 2Min um 90°. Als Ansatz haben wir den Tipp bekommen "r=120 setzen und Winkel zwischen Richtungsvektoren bestimmen und die Formel: cos90°= [mm] \bruch{ax+by+cz}{\wurzel{a^{2}+b^{2}+c^{2}}+\wurzel{x^{2}+y^{2}+z^{2}}}
[/mm]
Grüße,
Muellermilch
|
|
|
|
|
tut mir leid, ich habe die gleichung falsch aufgestellt,
sie sollte wie folgt lauten:
= [mm] \vektor{50 \\ -18 \\ 0}+r* \vektor{-64 \\ 64 \\ -32}
[/mm]
|
|
|
|
|
Hallo Muellermilch,
90° in welche Richtung, nach links oder nach rechts? Und was heißt die Angabe 90° eigentlich für den Steig- oder Sinkflug nach dem Richtungswechsel? Zu einer Geraden (der Abflugrichtung) liegen eben im Raum an jedem ihrer Punkte unendlich viele Geraden parallel.
War das die vollständige Aufgabe? Oder hast Du etwas abgekürzt?
Grüße
reverend
|
|
|
|
|
> Hallo Muellermilch,
>
> 90° in welche Richtung, nach links oder nach rechts? Und
> was heißt die Angabe 90° eigentlich für den Steig- oder
> Sinkflug nach dem Richtungswechsel? Zu einer Geraden (der
> Abflugrichtung) liegen eben im Raum an jedem ihrer Punkte
> unendlich viele Geraden parallel.
>
> War das die vollständige Aufgabe? Oder hast Du etwas
> abgekürzt?
Die Bahn des Flugzeugs wird als geradlinig angenommen und das Flugzeug wird als Punkt angesehen.
Mehr ist da nicht :/
Gruß,
Muellermilch
> Grüße
> reverend
>
|
|
|
|
|
> Hallo Muellermilch,
>
> 90° in welche Richtung, nach links oder nach rechts? Und
> was heißt die Angabe 90° eigentlich für den Steig- oder
> Sinkflug nach dem Richtungswechsel? Zu einer Geraden (der
> Abflugrichtung) liegen eben im Raum an jedem ihrer Punkte
> unendlich viele Geraden parallel.
Ist es relevant zu wissen ob nach links oder rechts? Kann man dies nicht allgemein lösen? :/
> War das die vollständige Aufgabe? Oder hast Du etwas
> abgekürzt?
>
> Grüße
> reverend
>
Gruß,
muellermilch
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:24 Mi 02.11.2011 | Autor: | chrisno |
Das kann man schon allgemein lösen. Doch dann gibst Du einen Kreis an, auf dem sich das Flugzeug befinden könnte. Besser ist es, wenn Du dann noch den teil des Kreises ausschließt, der unter der Erde liegt.
Zu dem Problem mit dem Einheitsvektor:
Du kannst da auch anders herangehen.
Berechne den Abstand zwischen C und D. Aus der Geschwindigkeit kannst Du dann berechnen, wie lange das Flugzeug für diese Strecke brauchen würde. Nach meiner Rechnung sind das 16 Minuten. Also musst Du nur ein Achtel des Richtungsvektors dazu addieren.
|
|
|
|
|
> Das kann man schon allgemein lösen. Doch dann gibst Du
> einen Kreis an, auf dem sich das Flugzeug befinden könnte.
> Besser ist es, wenn Du dann noch den teil des Kreises
> ausschließt, der unter der Erde liegt.
Das macht nichts. Können wir das einmal allgemein lösen und evtl dann auch in die linke oder rechte Richtung?
> Zu dem Problem mit dem Einheitsvektor:
> Du kannst da auch anders herangehen.
> Berechne den Abstand zwischen C und D. Aus der
> Geschwindigkeit kannst Du dann berechnen, wie lange das
> Flugzeug für diese Strecke brauchen würde. Nach meiner
> Rechnung sind das 16 Minuten. Also musst Du nur ein Achtel
> des Richtungsvektors dazu addieren.
Ich sollte schon die gegebenen "Tipps" verwenden.
ich stell nochmal die Gleichung auf:
g: [mm] \vec{x} [/mm] = [mm] \vektor{50 \\ -18 \\ 0} [/mm] + r* [mm] \vektor{-64 \\ 64 \\ 32}
[/mm]
nach 2min bzw 120 sek:
[mm] \vec{x} [/mm] = [mm] \vektor{50 \\ -18 \\ 0} [/mm] +120* [mm] \vektor{-64 \\ 64 \\ 32}
[/mm]
Wie setze ich nun fort?
muss ich die gleichung ausrechnen um auf einen neuen Vektor zukommen?
Gruß,
Muellermilch
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:15 Do 03.11.2011 | Autor: | hawe |
Mal ein Blick auf die Szene
Nach 2 min befindet der FLieger in
B:[42,-10,4]
und hat 12 km zurückgelegt. Jetzt biegt er ab in die Ebene mit dem Richtungsvektor der Geraden als Normalenvektor (also Senkrecht zur Flugrichtung)
Ebene E:100-2*x+2*y+z
und fliegt wieder 2 min, also 12 km und befindet sich dann auf einem Kreis der Ebene E mit dem Mittelpunkt B und Radius 12.
Ich nehme mal an er bleibt in der roten Ebene die von der Kursgeraden und der Steigungsrate vorgegeben wird, was dann die Positionen in den Punke E oder F ergeben würde:
E:[42+3*2^(3/2),-10+3*2^(3/2),4]
F: [42-3*2^(3/2),-10-3*2^(3/2),4]
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:27 Do 03.11.2011 | Autor: | leduart |
Hallo
mit deinem Richtungsvektor kannst du nicht einfach 120s davor schreiben!
die geschw. ist 100m/s*120s wie weit kommst du da?
es wurde dir mehrfach gesagt, dass einfach r=120 sinnlos ist. für r=1also in 1 s kämst du dann 96km weit, wenn die Angaben in km sind.
jeder Vektor, der mit dem Richtungsvektor das skalarprodukt 0 hat ist 90° dazu. Ich liese die z Koordinate die er bei 120s hat gleich, damit er nicht nach unten fliegt!
Gruss leduart
|
|
|
|