symmetric tensor power < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | k Körper mit Charakteristik 0, U endlichdimensionaler Vektorraum über k, dann wird der Raum [mm] S^n [/mm] U, mein Skript ist auf Englisch und ich weiß die Übersetzung nicht,
der n-fache Tensor von U wobei zwei Elemente [mm] x_1\otimes\ ...\otimes\ x_n, x'_1,\otimes\ ...\otimes\ [/mm] x'_{n} gleich sein sollen wenn es eine Permutation [mm] \sigma [/mm] der Zahlen {1,...,n} gibt sodass [mm] x_i=x_{\sigma(i)} \forall\ [/mm] i
aufgespannt von Elementen der Form [mm] u\otimes\ ...\otimes\ [/mm] u, u [mm] \in [/mm] U. |
Hier ist ein Beweis angegeben via [mm] S^n [/mm] U ist irreduzible Darstellung von GL(U), aber ich hätte es gerne noch etwas direkter, also anschaulicher. Ideen???
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: und zwar in Matheplanet.com, unter derselben Überschrift. Link gibt es leider keinen.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:35 Fr 18.10.2013 | Autor: | Lustique |
Ich denke es wäre einfacher herauszufinden, worum es in der Aufgabe genau geht, wenn du einfach den ursprünglichen Wortlaut der Aufgabenstellung hier posten würdest, also auf Englisch, ohne Änderungen deinerseits. Ich denke viele der Fortgeschritteneren hier werden Mathe sowieso eher auf Englisch als auf Deutsch betreiben.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:30 Fr 18.10.2013 | Autor: | felixf |
Moin,
> Ich denke es wäre einfacher herauszufinden, worum es in
> der Aufgabe genau geht, wenn du einfach den ursprünglichen
> Wortlaut der Aufgabenstellung hier posten würdest, also
> auf Englisch, ohne Änderungen deinerseits. Ich denke viele
> der Fortgeschritteneren hier werden Mathe sowieso eher auf
> Englisch als auf Deutsch betreiben.
das ist definitiv der Fall! Die Definition dabeischreiben schadet trotzdem nichts. Nur etwas uebersichtlicher wie hier, damit man klarer sieht was genau eigentlich die Frage ist, das waer schon ganz nett
LG Felix
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:29 Fr 18.10.2013 | Autor: | felixf |
Hallo Annika!
> k Körper mit Charakteristik 0, U endlichdimensionaler
> Vektorraum über k, dann wird der Raum [mm]S^n[/mm] U, mein Skript
> ist auf Englisch und ich weiß die Übersetzung nicht,
Man nennt das die $n$-te symmetrische Potenz von $U$. (Ein Tipp dazu: such nach den entsprechenden englischen Betriffen auf Wikipedia, dann schau links in der Spalte ob es eine deutsche Version vom Artikel gibt; das hilft oft weiter, unbekannte Begriffe zu uebersetzen.)
> der n-fache Tensor von U wobei zwei Elemente [mm]x_1\otimes\ ...\otimes\ x_n, x'_1,\otimes\ ...\otimes\[/mm]
> x'_{n} gleich sein sollen wenn es eine Permutation [mm]\sigma[/mm]
> der Zahlen {1,...,n} gibt sodass [mm]x_i=x_{\sigma(i)} \forall\[/mm]
> i
>
> aufgespannt von Elementen der Form [mm]u\otimes\ ...\otimes\[/mm] u,
> u [mm]\in[/mm] U.
> Hier ist ein Beweis angegeben
Ein Beweis wovon? Dass [mm] $S^n [/mm] U$ aufgespannt wird von den Elementen der Form $u [mm] \otimes \dots \otimes [/mm] u$, $u [mm] \in [/mm] U$?
Wenn du das meinst, schau dir doch erstmal den Fall $n = 2$ an. Wenn du einen beliebigen Tensor der Form [mm] $u_1 \otimes u_2 \in S^2 [/mm] U$ nimmst, musst du diesen als Linearkombination von Tensoren der Form $u [mm] \otimes [/mm] u$ schreiben.
Jetzt kannst du erstmal [mm] $u_1 \otimes u_2 [/mm] = [mm] u_2 \otimes u_1$ [/mm] in [mm] $S^2 [/mm] U$ beachten. Damit kannst du [mm] $(u_1 [/mm] + [mm] u_2) \otimes (u_1 [/mm] + [mm] u_2) [/mm] = 2 [mm] (u_1 \otimes u_2) [/mm] + [mm] (u_1 \otimes u_1) [/mm] + [mm] (u_2 \otimes u_2)$ [/mm] schreiben. Wenn du das jetzt etwas umformst und verwendest, dass 2 invertierbar ist (Koerper mit Charakteristik 0!) bekommst du die gesuchte Linearkombination.
So, und jetzt musst du dir ueberlegen, wie du das allgemeiner (also fuer $n > 2$) zeigen kannst.
LG Felix
|
|
|
|
|
Aufgabe | Let k be a field of characteristic 0. For any finite dimensional vector space U over k the space [mm] S^{n} [/mm] U is spanned by elements of the form [mm] u\otimes...\otimes [/mm] u, u [mm] \in [/mm] U. |
Hallo Felix,
lieben Dank für Deine Antwort.
Den Fall n=2 hab ich auch hingekriegt, und ab da hab ich n Brett vorm Kopf und scheitere schon an Elementen der Form [mm] y\otimes x\otimes...\otimes [/mm] x.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:28 Fr 18.10.2013 | Autor: | felixf |
Moin Annika,
> Let k be a field of characteristic 0. For any finite
> dimensional vector space U over k the space [mm]S^{n}[/mm] U is
> spanned by elements of the form [mm]u\otimes...\otimes[/mm] u, u [mm]\in[/mm]
> U.
>
> lieben Dank für Deine Antwort.
> Den Fall n=2 hab ich auch hingekriegt, und ab da hab ich n
> Brett vorm Kopf und scheitere schon an Elementen der Form
> [mm]y\otimes x\otimes...\otimes[/mm] x.
das explizit hinschreiben kann ich auch nicht, aber ich hab eine Idee, wie man zeigen kann, dass dies funktioniert.
Z.B. ist [mm] $\tfrac{11}{3} x^3 [/mm] - [mm] \tfrac{5}{6} [/mm] (x + [mm] y)^3 [/mm] + [mm] \tfrac{4}{3} [/mm] (2 x + [mm] y)^3 [/mm] - [mm] \tfrac{1}{2} [/mm] (3 x + [mm] y)^3 [/mm] = x [mm] y^2$. [/mm] (Die Koeffizienten der Linearkombination hab ich vom Computer bestimmen lassen. Zu zeigen dass es eine Loesung gibt ist jedoch gar nicht so schwer, wenn du dir die entsprechende Matrix anschaust die beim Koeffizientenvergleich entstehst.)
Damit bekommst du $x [mm] \otimes [/mm] y [mm] \otimes [/mm] y = [mm] \tfrac{11}{3} [/mm] (x [mm] \otimes [/mm] x [mm] \otimes [/mm] x) - [mm] \tfrac{5}{6} [/mm] (x + y) [mm] \otimes [/mm] (x + y) [mm] \otimes [/mm] (x + y) + [mm] \tfrac{4}{3} [/mm] (2 x + y) [mm] \otimes [/mm] (2 x + y) [mm] \otimes [/mm] (2 x + y) - [mm] \tfrac{1}{2} [/mm] (3 x + y) [mm] \otimes [/mm] (3 x + y) [mm] \otimes [/mm] (3 x + y)$.
Wenn du nachvollziehen kannst, wie ich auf beide Schritte gekommen bin, bist du sicher auch in der Lage allgemein zu beweisen, wie man $x [mm] \otimes [/mm] y [mm] \otimes \dots \otimes [/mm] y$ darstellen kann (bzw. beweisen, dass es eine solche Darstellung gibt!) und damit solltest du per Induktion in der Lage sein, den allgemeinen Fall zu beweisen.
LG Felix
|
|
|
|