www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - steckbriefaufgabe 2
steckbriefaufgabe 2 < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

steckbriefaufgabe 2: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:43 Fr 28.09.2012
Autor: luna19

Aufgabe
In einem Weingut soll ein parabelförmiger Kellereingang gemauert werden. Der Kellerboden soll eine Breite von 5 m haben, auf einer Breite von 2,50 m soll in der Mitte die lichte Höhe mindestens 2,20 m betragen.
(a) Geben Sie die Gleichung der Parabel an.
(b) Wie hoch muss der Keller mindestens sein, damit man einen Eingang dieser Form mauern kann?

Hallo :)

ich komme hier irgendwie nicht weiter:



3 Bedingungen:

f(2,5)=0

f(-2,5)=0

f(2,5)=2,2

aber die bedingungen stimmen nicht ..

und was ist eine lichte höhe?

danke !!!


        
Bezug
steckbriefaufgabe 2: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Fr 28.09.2012
Autor: Steffi21

Hallo, legen wir die Parabel in ein Koordinatensystem, der Fußboden ist die x-Achse, die Breite beträgt 5m, du hast die Punkte (-2,5; 0) und (2,5; 0), jetzt kommen die 2,5m ins Spiel, wo die lichte Höhe mindestens 2,2m betragen soll, du hast noch die Punkte (-1,25; 2,2) und (1,25; 2,2) ich bin 1,96m groß, eine Tür mit einer lichten Höhe von 1,96m und höher kann ich problemlos durchlaufen, bei einer lichten Höhe der Tür von 1,80m gibt es dicke Beulen, wenn der Kopf nicht eingezogen wird, Steffi

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
steckbriefaufgabe 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Fr 28.09.2012
Autor: luna19

danke für die antwort!!!

ich verstehe nicht,warum die lichte höhe nicht das maximum ist und wie die

Bedingungen f(-1,25)=2,2 und f(1,25)=2,2 zustandekommen...

Bezug
                        
Bezug
steckbriefaufgabe 2: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Fr 28.09.2012
Autor: chrisno

Hallo, luna19

lies die Aufgabe und die Antwort noch nal langsam Satz für Satz. Es steht alles da.

> ich verstehe nicht,warum die lichte höhe nicht das maximum

Weil dann nur der Mittelscheitel durchpasst, aber nicht das, was links und rechts davon kommt.

"auf einer Breite von 2,50 m soll in der Mitte die lichte Höhe mindestens 2,20 m betragen"
Also, es soll noch ein Typ mit einem Quadratschädel, der 2,50 m breit ist (der Schädel) durchpassen. Dabei ist der Typ 2,20 hoch.


> ist und wie die
>
> Bedingungen f(-1,25)=2,2 und f(1,25)=2,2 zustandekommen...

s.o. Mal Dir den Typen mit seinem Schädel mal in die Skizze von Steffi ein. Er hat schon etwas vorgearbeitet (Steffi21, nicht der Typ mit dem Quadratschädel).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]