www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - ring und matrizen
ring und matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ring und matrizen: tipp
Status: (Frage) beantwortet Status 
Datum: 23:35 Do 01.12.2005
Autor: emilystrange

Aufgabe
Sei $R$ ein Ring mit Eins und $A = [mm] [a_{ij}] \in R^{n\times n}$ [/mm] mit

[mm] $a_{ij}=\begin{cases} 1, & \mbox{für } j=i+1 \mbox \\ 0, & \mbox{ sonst} \end{cases}$ [/mm]


Berechnen Sie [mm] $A^{k} [/mm] = [mm] A*A*A*\ldots*A$ [/mm] ($k$ Faktoren)
für $1 [mm] \le [/mm] k  [mm] \le [/mm] n$. Benutzen Sie vollständige Induktion nach $k$.


könnt ihr mir vielleicht einen tipp geben?
ich soll sicherlich nicht zeigen, dass [mm] A^{k+1} [/mm] = [mm] A^{k} [/mm] *A = A*A*...*A (k mal) *A gilt, oder?
muss ich es in matrizen form schreiben? also [mm] a_{ij} [/mm] und damit beweisen?

würd mich über eine hilfestelleung sehr freuen.


liebe grüße, emi

        
Bezug
ring und matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Fr 02.12.2005
Autor: Leopold_Gast

Hier drängt sich Probieren ja geradezu auf:

[mm]A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}[/mm]

Jetzt berechne [mm]A^2, A^3, A^4[/mm]. Dann siehst du schon, was du beweisen sollst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]