www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - rekursiv definiere reihe
rekursiv definiere reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursiv definiere reihe: aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:47 Sa 27.10.2007
Autor: lum_pi

Aufgabe
beweise, dass die folgende rekursiv definierte reihe [mm] a_{n}=g*a_{n-1} +d*a_{0} [/mm]  die folgende explizite darstellung [mm] a_{n}=(g^{n}+\bruch{1-g^{n}}{1-g}*d)*a_{0} [/mm] hat  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

hi leute, mir ist schon klar, dass man {n-1} für n einsetzten muss aber wie kommt man dann von der expliziten darstellung auf die rekusive?

danke schonmal für ne antwort.

        
Bezug
rekursiv definiere reihe: vollständige Induktion
Status: (Antwort) fertig Status 
Datum: 14:00 Sa 27.10.2007
Autor: Loddar

Hallo lum_pi,

[willkommenmr] !!


Um hier diese Identität von rekursive und expliziter Form zu zeigen, wirst Du wohl einen Nachweis mit vollständiger Induktion führen dürfen.

Zeige also, dass beide Darstellungen für $n \ = \ 0$ dieselben Werte haben (Induktionsanfang).

Im Induktionsschritt musst Du dann zeigen: [mm] $a_{n+1} [/mm] \ = \ [mm] \left(g^{n+1}+\bruch{1+g^{n+1}}{1-g}*d\right)*a_0$ [/mm] .

Dabei verwenden wir auch die rekursive Darstellung:
[mm] $$a_{n+1} [/mm] \ = \ [mm] g*\red{a_n}+d*a_0 [/mm] \ = \ [mm] g*\red{\left(g^n+\bruch{1+g^n}{1-g}*d\right)*a_0}+d*a_0 [/mm] \ = \ ...$$
Nun weiter umformen, um auf o.g. Term für [mm] $a_{n+1}$ [/mm] zu kommen.


Gruß
Loddar


Bezug
                
Bezug
rekursiv definiere reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Sa 27.10.2007
Autor: lum_pi

ok vielen dank für den hinweis, dann werd ich das mal versuchen.
ich habe zuerst gedacht, es reicht, wenn man in die explizite darstellung [mm] a_{n} [/mm] für n -> n-1 einsetzt und dann auflöst, sodass man wieder auf die rekursive darstellung kommt (nur das auflösen ist ein problem...)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]