www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - radialsymmetrische funktionen
radialsymmetrische funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

radialsymmetrische funktionen: Frage
Status: (Frage) beantwortet Status 
Datum: 08:54 Mo 06.06.2005
Autor: bobby

Hallo!

Hab ein Problem mit folgender Aufgabe:

Eine Funktion [mm] f:\IR^{n} \to \IR [/mm] heisst radial-symmetrisch, wenn ein Funktion [mm] g:\IR \to \IR [/mm] mit [mm] f(x)=g(\parellel [/mm] x [mm] \parallel_{2}) [/mm] existiert.

Stellen Sie gradf für differenzierbare radial-symmetrische Funktionen f in Abhängigkeit von x, [mm] \parallel [/mm] x [mm] \parallel_{2} [/mm] und g' dar.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
radialsymmetrische funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Mo 06.06.2005
Autor: banachella

Hallo!

Betrachte zunächst die Funktion $h:\ [mm] \IR^n\to\IR,\ x\mapsto \|x\|_2$. [/mm] Dann ist [mm] $f(x)=g\big(h(x)\big)$. [/mm]
Insbesondere ist nach der Kettenregel [mm] $\mathrm{grad}f(x)=g'\big(h(x)\big)*\mathrm{grad}h(x)$... [/mm]
Weißt du, wie du [mm] $\mathrm{grad}h(x)$ [/mm] berechnest?

Gruß, banachella

Bezug
                
Bezug
radialsymmetrische funktionen: Frage
Status: (Frage) für Interessierte Status 
Datum: 19:02 Mo 06.06.2005
Autor: bobby

Also im Grunde muss ich doch dann nur die Ableitung von h bestimmen oder? Hab das ein paar mal probiert, aber ich bekomm irgendwie nicht so richtig die Ableitung hin. Muss doch die Ableitung von
[mm] \parallel [/mm] x [mm] \parallel_{2} [/mm] bestimmen, aber das krieg ich nicht hin.

Bezug
                        
Bezug
radialsymmetrische funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:00 Mi 08.06.2005
Autor: matux

Hallo bobby!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]