www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - quadratische Konvergenz
quadratische Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 So 20.11.2005
Autor: roxy

Halle Leute,

hab folgende Aufgabe:
"Beweisen Sie die quadratische Konvergenz  [mm] b_{n+1} [/mm] -  [mm] a_{n+1} \le \bruch{1}{4a_{0}}(b_{n}-a_{n})^{2}. [/mm] (Diese Abschätztung bedeutet, dass [mm] b_{n} [/mm] -  [mm] a_{n}\le Ck^{2}^{n} [/mm] (ist 2 hoch n!!) ist mit gewissen Konstanten 0 < k <1, C>0, und daher schneller klein wird als jede Exponentialfolge.)"
bisher habe ich gezeigt, dass beginnend mit 0 < [mm] a_{0} [/mm] < [mm] b_{0}, [/mm] gilt: [mm] b_{n}-a_{n} \le 2^{-n}(b_{0}-a_{0}), n\in\IN, [/mm] wobei [mm] b_{n+1} [/mm] = [mm] \bruch{a+b}{2} [/mm] (aritm. Mittel) und [mm] a_{n+1} [/mm] = [mm] \bruch{2ab}{a+b} [/mm] (harm. Mittel). (d.h. [mm] a_{n+1} \le b_{n+1}). [/mm]
was muss ich weiter machen? kann mir jemand weiterhelfen?
vielen Dank!

        
Bezug
quadratische Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 So 20.11.2005
Autor: Mordad75

Durch einfaches Einsetzen und der Tatsache, dass [mm] a_{n} [mm] b_{n+1}-a_{n+1}=\bruch{(b_{n}-a_{n})^2}{2(a_{n}+b_{n})} [/mm] < [mm] \bruch{1}{4a_{n}}(b_{n}-a_{n})^2 [/mm] < [mm] \bruch{1}{4a_{0}}(b_{n}-a_{n})^2 [/mm] q.e.d.

Bezug
                
Bezug
quadratische Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:12 So 20.11.2005
Autor: roxy

danke für deine hilfe...hab wohl den Wald vor lauter Bäumen nicht gesehen...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]