www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - potenzen mit gl.exponenten
potenzen mit gl.exponenten < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

potenzen mit gl.exponenten: Frage
Status: (Frage) beantwortet Status 
Datum: 15:41 Mo 24.01.2005
Autor: simon89

hi
ich hab hier so zwei problemchen!!

1.

schreibe ohne klammern

[mm] a^7 [/mm] x ( [mm] \bruch{1}{a})^7=?????????? [/mm]

2.

Vereinfache so weit wie möglich

[mm] \bruch{(2x+2)^2}{(x+1)^2}=???? [/mm]

hoffe könnt mir helfen bei diesen aufgaben!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
potenzen mit gl.exponenten: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 15:57 Mo 24.01.2005
Autor: Loddar

Hallo Simon,

hast Du denn überhaupt keine eigenen Ideen??

Sieh' Dir doch mal die MBPotenzgesetze an ...


[mm]a^7 * \left( \bruch{1}{a} \right)^7 \ = \ a^7 * \left( a^{-1} \right)^7 \ = \ a^7 * a^{(-1) * 7} \ = \ a^7 * a^{-7} \ = \ a^{7 + (-7)} \ = \ a^{7 - 7} \ = \ a^{0} \ = \ 1[/mm]



Bei der zweiten Aufgabe kannst Du erstmal etwas ausklammern und anschließend kürzen ...


Versuch' das mal und poste doch Deine Ergebnisse zur Kontrolle, wenn Du möchtest ...


Grüße
Loddar


Bezug
        
Bezug
potenzen mit gl.exponenten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Mo 24.01.2005
Autor: Knaus

Also Aufgabe 1:

[mm] a^7 \* (1/a)^7 [/mm]  =>  [mm] a^7 \* (a^{-1})^7 [/mm]  => [mm] a^7 \* (a^{-7}) [/mm] => 1


Aufgabe 2:

Nun viel kann man da nicht machen, so meine Ansicht, die nicht umbedigt das Maß aller Dinge ist...

Ich denke das ist weit genug vereinfacht...  Im Grunde habe ich auch nur die Binomische Formel verwendet... wenn dir das reicht dann sollten die Aufgaben gelöst sein

greetz Knaus

[mm]\bruch{(2x+2)^2}{(x+1)^2} = [/mm] [mm] (\bruch{2x+2}{x+1})^2 [/mm] = [mm] \bruch{(4x^2+8x+4)}{(x^2+2x+1)} [/mm]

Bezug
                
Bezug
potenzen mit gl.exponenten: ein wenig geht noch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mo 24.01.2005
Autor: hobbymathematiker


> Also Aufgabe 1:
>  
> [mm]a^7 \* (1/a)^7[/mm]  =>  [mm]a^7 \* (a^{-1})^7[/mm]  => [mm]a^7 \* (a^{-7})[/mm]

> => 1
>  
>
> Aufgabe 2:
>  
> Nun viel kann man da nicht machen, so meine Ansicht, die
> nicht umbedigt das Maß aller Dinge ist...
>  
> Ich denke das ist weit genug vereinfacht...  Im Grunde habe
> ich auch nur die Binomische Formel verwendet... wenn dir
> das reicht dann sollten die Aufgaben gelöst sein
>  
> greetz Knaus
>  
> [mm]\bruch{(2x+2)^2}{(x+1)^2} =[/mm] [mm](\bruch{2x+2}{x+1})^2[/mm] =
> [mm]\bruch{(4x^2+8x+4)}{(x^2+2x+1)}[/mm]
>  

[mm]\bruch{4(x^2+2x+1)}{(x^2+2x+1)}[/mm]


da müsste noch was gehen
Gruss
Eberhard

Bezug
                
Bezug
potenzen mit gl.exponenten: etwas umständlich ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:56 Di 25.01.2005
Autor: Loddar

Das Ausmultiplizieren erscheint mir doch etwas umständlich:

[mm] $\bruch{(2x+2)^2}{(x+1)^2} [/mm] \ = \ [mm] \left( \bruch{2x+2}{x+1} \right)^2\ [/mm] = \ [mm] \left[ \bruch{2*(x+1)}{x+1} \right]^2 [/mm] \ = \ ...$


Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]