www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - polynom
polynom < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

polynom: aufgabe1
Status: (Frage) beantwortet Status 
Datum: 19:06 Sa 19.07.2008
Autor: marie11

Aufgabe
Geben sie jeweils ein Polynom [mm] p\in [/mm] R[x] an mit:
a) p(0)=1, p(1)=3,p(2)=2, p(-1)=1,p(2)=-1

wie geht das?

        
Bezug
polynom: Polynom
Status: (Antwort) fertig Status 
Datum: 19:24 Sa 19.07.2008
Autor: clwoe

Hi,

du musst doch nur ein Polynom aufstellen, welches die Vorschrift erfüllt.

Ich gebe dir mal die erste an, den Rest schaffst du sicherlich alleine.

Also, es soll gelten: p(0)=1

p: x+1=1

0+1=1 also ist die Bedingung erfüllt. Es gäbe hier noch unendlich viele andere Möglichkeiten aber das ist halt das einfachste.

Gruß,
clwoe


Bezug
                
Bezug
polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:13 So 20.07.2008
Autor: angela.h.b.

Hallo,

so ist das nicht gemeint.

Es soll ein Polynom gefunden werden, welches all diese Bedingungen gleichzeitig erfüllt.

Gruß v. Angela

Bezug
        
Bezug
polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 07:19 So 20.07.2008
Autor: angela.h.b.


> Geben sie jeweils ein Polynom [mm]p\in[/mm] R[x] an mit:
>  a) p(0)=1, p(1)=3,p(2)=2, p(-1)=1,p(2)=-1
>  
> wie geht das?

Hallo,

Du hast hier 5 Polynom-Punkte angegeben, und Du weißt sicher, daß hierdurch ein Polynom vom Grad 4 eindeutig bestimmt ist.

Es gibt also [mm] p(x)=ax^4+bx³+cx²+dx+e, [/mm] welches die Bedingungen erfüllt.

Die Koeffizienten findet Du durch Lösung des aus den angegebenen Punkten gegebenen Gleichungssystems.

Damit hast Du dann das kleinste Polynom, welches die Bedingungen erfüllt - natürlich gibt es noch viele andere höheren Grades.

Gruß v. Angela



Bezug
                
Bezug
polynom: Polynom
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 So 20.07.2008
Autor: clwoe

Hallo,

ich dachte mir schon, das das so nicht stimmen kann, aber da steht ja auch "jeweils" ein Polynom.

Sorry!

Gruß,
clwoe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]