www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - partielle Ableitungen
partielle Ableitungen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Ableitungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:13 Di 02.02.2010
Autor: jojo1484

Aufgabe
Berechnen Sie alle partiellen Ableitungen, bis zur 2. Ordnung für die Funktion
f(x,y,z)= [mm] arctanx+ze^{xy} [/mm]

Ich gebe mal meine Lösungen, die ich errechnet habe an und würde gerne wissen ob das so korrekt ist.

[mm] f_{x}=\bruch{1}{1+x^2}+ze^{xy}*y [/mm]

[mm] f_{y}=ze^{xy}*x [/mm]

[mm] f_{z}=e^{xy} [/mm]

[mm] f_{xx}=\bruch{-2x}{(1+x^2)^2}+yze^{xy}*y [/mm]

[mm] f_{yy}=xze^{xy}*x [/mm]

[mm] f_{zz}=0 [/mm]

[mm] f_{xy}=1*ze^{xy}*x+ze^{xy}*x [/mm] = [mm] x*(2ze^{xy}) [/mm]

[mm] f_{yx}=1*ze^{xy}*y+ze^{xy}*y [/mm] = [mm] y*(2ze^{xy}) [/mm]

[mm] f_{xz}=f_{zx}=ye^{xy} [/mm]

[mm] f_{yz}=f_{zy}=xe^{xy} [/mm]



Nun habe ich noch von jemand anderem ein Ergebnis, der kommt eigentlich immer aufs gleiche, bis auf die Ergebnisse bei [mm] f_{xy} [/mm] und [mm] f_{yx} [/mm]

Sein Ergebnis ist hier:
[mm] f_{xy} [/mm] = [mm] f_{yx}=z(e^{xy}*x*y+e^{xy}*1) [/mm] = [mm] ze^{xy}(xy+1) [/mm]

kann das stimmen?


Vielen Dank für Eure Hilfe

Mfg
jojo1484

        
Bezug
partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Di 02.02.2010
Autor: Loddar

Hallo jojo!


> [mm]f_{x}=\bruch{1}{1+x^2}+ze^{xy}*y[/mm]
>  
> [mm]f_{y}=ze^{xy}*x[/mm]
>  
> [mm]f_{z}=e^{xy}[/mm]

[ok] Die ersten Ableitungen sind korrekt.



  

> [mm]f_{xx}=\bruch{-2x}{(1+x^2)^2}+yze^{xy}*y[/mm]
>  
> [mm]f_{yy}=xze^{xy}*x[/mm]
>  
> [mm]f_{zz}=0[/mm]

[ok]

  

> [mm]f_{xy}=1*ze^{xy}*x+ze^{xy}*x[/mm] = [mm]x*(2ze^{xy})[/mm]

[notok] Hier stimmt der Faktor $*x_$ im ersten Term nicht.

  

> [mm]f_{yx}=1*ze^{xy}*y+ze^{xy}*y[/mm] = [mm]y*(2ze^{xy})[/mm]

[notok] Gleicher Fehler. Da scheint bei Dir stets etwas mit der MBProduktregel verquer zu laufen.

  

> [mm]f_{xz}=f_{zx}=ye^{xy}[/mm]
>  
> [mm]f_{yz}=f_{zy}=xe^{xy}[/mm]

[ok]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]