www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - partielle Ableitung
partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 Fr 21.10.2005
Autor: Slartibartfast

Servus,

ich soll den Gradienten folgender Fkt bilden:

[mm] f(x_{1},x_{2},x_{3}) [/mm] =  [mm] sin(x_{1}x_{2}) [/mm] * [mm] cos(x_{2}x_{3}) [/mm]

dazu muss ich partiell ableiten. Dabei werden doch die Variablen, nach denen man gerade nicht ableitet als Konstanten angesehen. Dann hätte ich aber gleich am Anfang (und wahrscheinlich bei allen anderen Ableitungen auch)

[mm] f_{x_{1}}(...) [/mm] = [mm] x_{2} [/mm] * cos [mm] (x_{1}x_{2}) [/mm] * 0 ...

vorausgesetzt, dass ich die normale Produkt-/Kettenregel überhaupt verwenden darf - bestimmt nicht Sinn der Sache. Oder lieg ich ganz falsch?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
partielle Ableitung: cos von Konstante
Status: (Antwort) fertig Status 
Datum: 23:35 Fr 21.10.2005
Autor: Loddar

Hallo Slartibartfast!



> Dabei werden doch die Variablen, nach denen man gerade
> nicht ableitet als Konstanten angesehen.


[ok] Völlig richtig!

Und der [mm] $\cos$ [/mm] oder [mm] $\sin$ [/mm] von einer kosntanten Zahl ergibt dann wieder eine konstante Zahl, so dass sich ergibt:

[mm] $f_{x1}(x_1; x_2; x_3) [/mm] \  = \ [mm] \bruch{\partial f}{\partial x_1}(x_1; x_2; x_3) [/mm] \ = \ [mm] x_2 [/mm] * [mm] \cos(x_1*x_2) [/mm] * \ [mm] \red{\cos(x_2*x_3)}$ [/mm]


Nun klar(er)? Kannst Du nun die anderen partiellen Ableitungen bilden?


Gruß
Loddar


Bezug
                
Bezug
partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:05 Sa 22.10.2005
Autor: Slartibartfast

ach du Schande... ich sollte nicht mehr so spät Mathe machen.
Danke. Der Rest dürfte jetzt kein Problem mehr sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]