www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - partielle Ableitung
partielle Ableitung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Ableitung: höherer Ordnung - Aufgaben
Status: (Frage) beantwortet Status 
Datum: 13:28 Sa 12.02.2005
Autor: Sue20

1. Von f(x,y) = [mm] e^{-4x²-(y-1)²} [/mm] ist [mm] f_{yy} [/mm] zu berechnen.

[mm] f_{yy} [/mm] = [mm] -2e^{4x²-(y-1)²} [/mm] + (-2(y-1)) [mm] (-2(y-1)e^{4x²-(y-1)²}) [/mm]

= [mm] -2e^{4x²-(y-1)²} [/mm] -2(y-1) [mm] (-2(y-1)e^{4x²-(y-1)²}) [/mm]

Wie kann man das noch vereinfachen?

2. f(x,y) = [mm] \wurzel{2x + 3xy + 4y} [/mm]
[mm] f_{x}(x,y) [/mm] berechnen
Lösung ist: [mm] \bruch{2 + 3y}{2\wurzel{2x + 3xy + 4y}} [/mm]

Ich komme aber auf: (2x + 3xy + [mm] 4y)^{1/2}*(2 [/mm] + 3y)
= [mm] \wurzel{2x + 3xy + 4y}*(2 [/mm] + 3y)

Was mache ich falsch?

3. f(x,y) = cos [mm] (e^{xy} [/mm] + xy)
Wann ist [mm] f_{x} [/mm] = [mm] f_{y}? [/mm]

[mm] f_{x} [/mm] = -sin [mm] (e^{xy} [/mm] + [mm] xy)*(ye^{xy} [/mm] + y)
= -y sin [mm] (e^{xy} [/mm] + xy) [mm] (e^{xy} [/mm] + 1)

[mm] f_{y} [/mm] = -sin [mm] (e^{xy} [/mm] + xy) [mm] (xe^{xy} [/mm] + x)
= -x sin [mm] (e^{xy} [/mm] + xy) [mm] (e^{xy} [/mm] + 1)

[mm] f_{x} [/mm] = [mm] f_{y} [/mm] falls x = y???

4. f(x,y) = sin (x² + y²) [mm] +e^{x} [/mm]
Bestätigen Sie [mm] f_{xy} [/mm] = [mm] f_{yx}! [/mm]

[mm] f_x [/mm] = (cos (x² + y²)*2x) + [mm] e^{x} [/mm]
[mm] f_y [/mm] = (cos (x² + y²)*2y) + [mm] e^{x} [/mm]

Wie berechne ich hier [mm] f_{xy} [/mm] und [mm] f_{yx}? [/mm]

Vielen Dank!

LG Sue


        
Bezug
partielle Ableitung: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 13:44 Sa 12.02.2005
Autor: Loddar

Hallo Sue!

> 2. f(x,y) = [mm]\wurzel{2x + 3xy + 4y}[/mm]
>  [mm]f_{x}(x,y)[/mm] berechnen
>  Lösung ist: [mm]\bruch{2 + 3y}{2\wurzel{2x + 3xy + 4y}}[/mm]
>  
> Ich komme aber auf: [mm9(2x + 3xy + [mm] 4y)^{1/2}*(2 [/mm] + 3y)[/mm]
>  = [mm]\wurzel{2x + 3xy + 4y}*(2 + 3y)[/mm]
>  
> Was mache ich falsch?

Du machst einen kleinen Vorzeichenfehler:
[mm] $\left( \ \wurzel{z} \ \right)' [/mm] \ = \ [mm] \left( \ z^{+\bruch{1}{2}} \ \right)' [/mm] \ = \ \ [mm] \bruch{1}{2} [/mm] * [mm] z^{\red{-}\bruch{1}{2}} [/mm] \ = \ [mm] \bruch{1}{2 \ \wurzel{z}}$ [/mm]

Alles klar?

Loddar


Bezug
        
Bezug
partielle Ableitung: Aufgabe 3 + 4
Status: (Antwort) fertig Status 
Datum: 14:10 Sa 12.02.2005
Autor: Loddar

Aufgabe 3

> [mm]f(x,y) = cos \left(e^{xy} + xy \right)[/mm]
> Wann ist [mm]f_{x}[/mm] = [mm]f_{y}[/mm] ?
>  
> [mm]f_{x} = -sin (e^{xy} + xy)*(ye^{xy} + y)[/mm]
> [mm]= -y * sin (e^{xy} + xy) * (e^{xy} +1)[/mm]

[daumenhoch]

> [mm]f_{y} = -sin (e^{xy} + xy) * (xe^{xy} + x)[/mm]
> [mm]= -x * sin (e^{xy} + xy) * (e^{xy} + 1)[/mm]

[daumenhoch]


> [mm]f_{x} = f_{y}[/mm] falls x = y???

[daumenhoch]
Vielleicht sollt man sich noch die Nullstellen des Ausdruckes [mm] $\sin \left( e^{xy} + xy \right)$ [/mm] ansehen ...



Aufgabe 4

> [mm]f(x,y) = sin (x² + y²) + e^{x}[/mm]
> Bestätigen Sie [mm]f_{xy} = f_{yx}[/mm] !
>  
> [mm]f_x = \cos \left(x^2 + y^2 \right) * 2x + e^{x}[/mm]

[daumenhoch]


>  [mm]f_y = \cos \left(x^2 + y^2 \right) * 2y + e^{x}[/mm]

[notok] Der Term [mm] $e^x$ [/mm] entfällt, da er ja für die partielle Ableitung nach $y$ als konstant angesehen wird.



> Wie berechne ich hier [mm]f_{xy}[/mm] und [mm]f_{yx}[/mm] ?

Du nimmst [mm] $f_x(x,y)$ [/mm] und leitest nach $y$ ab;
analog [mm] $f_y(x,y)$ [/mm] nach $x$ ableiten.

Letzter Schritt: Gleichheit zeigen (wenn man sie sowieso nicht gleich sieht)!


Loddar


Bezug
        
Bezug
partielle Ableitung: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 14:30 Sa 12.02.2005
Autor: Loddar

Aufgabe 1

> Von [mm]f(x,y) = e^{-4x²-(y-1)²}[/mm] ist [mm]f_{yy}[/mm] zu berechnen.
> [mm]f_{yy} = -2e^{4x²-(y-1)²} -2(y-1) * (-2(y-1)e^{4x²-(y-1)²})[/mm]

Zunächst hast du einen kleinen Tippfehler drin:
[mm] $f_{yy} [/mm] \ = \ [mm] -2e^{\red{-}4x^2-(y-1)^2} [/mm] \ - 2*(y-1) * [mm] \left[-2*(y-1)*e^{\red{-}4x^2-(y-1)^2} \right]$ [/mm]

Als Vereinfachung könntest Du noch $2 * [mm] \left[ e^{-4x^2-(y-1)^2} \right]$ [/mm] ausklammern:

[mm] $\Rightarrow$ [/mm]
[mm] $f_{yy}(x,y) [/mm] \ = \ 2 * [mm] \left[ 2*(y-1)^2 - 1 \right] [/mm] * [mm] e^{-4x^2-(y-1)^2}$ [/mm]


Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]