www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - orthogonale abbildung
orthogonale abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonale abbildung: hey
Status: (Frage) beantwortet Status 
Datum: 16:16 Mi 12.01.2011
Autor: looney_tune

Aufgabe
Sei (V, σ) ein endlichdimensionaler euklidischer Raum mit dimR V > 0 und sei w ∈ V [mm] \{0}. [/mm]
Für alle v ∈ V seien p(v) und ℓ(v) = v − p(v) die orthogonale Projektion bzw. das Lot
von v auf (Rw)?. Sei f : V → V , v→ p(v) − ℓ(v). Man beweise, dass f eine uneigentlich
orthogonale Abbildung ist und dass f(v) = v − 2sigma(v,w)/sigma(w,w) · w gilt für alle v ∈ V .

So meine Frage ost jetzt, dass ich irgendwie keine Ansätze habe und könnte mir vielleciht jemand einen Tipp geben, wie ich das mit dieser Aufgabe machen soll. Wäre echt lieb.

lg

        
Bezug
orthogonale abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Mi 12.01.2011
Autor: fred97


> Sei (V, σ) ein endlichdimensionaler euklidischer Raum mit
> dimR V > 0 und sei w ∈ V [mm]\{0}.[/mm]
>  Für alle v ∈ V seien p(v) und ℓ(v) = v − p(v) die
> orthogonale Projektion bzw. das Lot
>  von v auf (Rw)?. Sei f : V → V , v→ p(v) − ℓ(v).
> Man beweise, dass f eine uneigentlich
>  orthogonale Abbildung ist und dass f(v) = v −
> 2sigma(v,w)/sigma(w,w) · w gilt für alle v ∈ V .
>  So meine Frage ost jetzt, dass ich irgendwie keine
> Ansätze habe und könnte mir vielleciht jemand einen Tipp
> geben, wie ich das mit dieser Aufgabe machen soll.


Vielleicht kann ich Dir helfen, wenn Du verrätst, was (Rw)  bedeutet.

FRED

> Wäre
> echt lieb.
>  
> lg


Bezug
                
Bezug
orthogonale abbildung: hey
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Do 13.01.2011
Autor: looney_tune

ich meinte mit (Rw) das hier  $ [mm] (\IR\cdot{}w)\perp. [/mm] $

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]