www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - noethersch/ Untermodul
noethersch/ Untermodul < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

noethersch/ Untermodul: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Di 28.11.2017
Autor: mimo1

Aufgabe
Zeige, ist [mm] X\subseteq \IZ^n [/mm] eine beliebige Teilmenge von [mm] \IZ^n, [/mm] so gibt es immer eine endliche Teilmenge [mm] \lbrace x_1,...,x_k\rbrace [/mm] von X, so dass jedes Element von X eine Linearkombination von [mm] x_1,....,x_k [/mm] mit ganzzahligen Koeffizienten ist.


Hallo miteinander,


zu zeigen ist: Es ex. [mm] x_1,....,x_n\in [/mm] X: [mm] M=\langle x_1,...,x_n\rangle_{\IZ} [/mm]
[mm] \IZ^n [/mm] ist noethersch, da wie [mm] \IZ^n=\IZ\oplus....\oplus\IZ [/mm] und wir wissen dass [mm] \IZ [/mm] noethersch ist. Aus der VL wissen wir außerdem: Wenn [mm] M_1,...,M_n [/mm] noethersch sind dann ist auch [mm] M_1\oplus....\oplus M_n [/mm] noethersch

[mm] \Rightarrow \IZ^n [/mm] noethersch

[mm] M\leq \IZ [/mm] , M Untermodul [mm] \Rightarrow [/mm] M endlich erzeugt
[mm] \Rightarrow m_1,...,m_l\in [/mm] M

irgendwie komme ich nicht weiter. könnte mir da jemand weiterhelfen?
Danke!



        
Bezug
noethersch/ Untermodul: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Di 28.11.2017
Autor: UniversellesObjekt

Überlege dir das folgende nützliche Lemma: Besitzt ein Modul $M$ ein endliches Erzeugendensystem, so kann jedes Erzeugendensystem von $M$ zu einem endlichen verkleinert werden. Die analoge Aussage gilt für Gruppen, Körper, ...

Wende das auf den von $X$ erzeugten Untermodul an.

Liebe Grüße
UniversellesObjekt

Bezug
        
Bezug
noethersch/ Untermodul: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Di 28.11.2017
Autor: mimo1

Meinst du damit, dass man der vonX erzeugte Untermodul [mm] \langle X\rangle_{\IZ} \subseteq \IZ^n [/mm] de kleinste [mm] \IZ-Untermodul [/mm]  ist, der X enthält, also

[mm] \langle X\rangle_{\IZ}=\lbrace \sum_{i=1}^n a_i\in\IZ [/mm] und [mm] x_i\in X\rbrace [/mm]

Bezug
                
Bezug
noethersch/ Untermodul: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Di 28.11.2017
Autor: UniversellesObjekt

Das ist kein Satz.

Ich meine, dass du dir [mm] $\langle X\rangle$ [/mm] angucken sollst. Da [mm] $\IZ^n$ [/mm] noethersch ist, gibt es ein endliches Erzeugendensystem für [mm] $\langle X\rangle$. [/mm] Darauf sollst du mein Lemma anwenden (das du zunächst beweisen sollst) und dann mal sehen, was sich so ergibt.

Liebe Grüße
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]