www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - nichtlineare Regression
nichtlineare Regression < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nichtlineare Regression: Idee
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:31 Do 30.10.2008
Autor: Hannibal2110

Aufgabe
Gegeben ist das folgende Modell: [mm] y=f(x)=a+b\*e^{c\*x^{2}+d\*x}. [/mm] Hieraus sollen die Parameter a,b,c und d indentifiziert werden (nichtlineare Regression).
Dazu sind für die Funktion [mm] Z(a,b,c,d)=\summe_{i=1}^{9}(x_{i}-f(x_{i}))^{2} [/mm] die globalen Minima zu berechnen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also ich weiß das hier die Möglichkeit besteht, es iterativ mittels dem Gauß-Newton-Verfahren zu lösen.
Jenes hat aber das Problem, dass die Konvergenz des Verfahrens nicht gesichert ist. Deswegen wollte ich die Funktion auf ein lineares Modell überführen mittels dem natürlichen Logarithmus.
Dann ergibt sich:
[mm] lny=lna+lnb+cx^{2}+dx [/mm]
--> [mm] \summe_{i=1}^{9} (lny_{i}-lna-lnb-cx_{i}^{2}-dx_{i})^{2} [/mm]
(Die 9 ergibt sich daraus, das ich insgesamt 9 Werte habe, jeweils für x und y)

So jetzt ableiten jeweils nach a,b,c und d (habe lna=A und lnb=B gesetzt):

a: [mm] -2\*(\summe_{i=1}^{9}(lny_{i}-A-B-cx_{i}^{2}-dx_{i})) [/mm]
b: [mm] -2\*(\summe_{i=1}^{9}(lny_{i}-A-B-cx_{i}^{2}-dx_{i})) [/mm]
c: [mm] -2\*(\summe_{i=1}^{9}(lny_{i}-A-B-cx_{i}^{2}-dx_{i})\*x_{i}^{2}) [/mm]
d: [mm] -2\*(\summe_{i=1}^{9}(lny_{i}-A-B-cx_{i}^{2}-dx_{i})\*x_{i}) [/mm]

So jetzt nach allen Variablen umstellen. Aber da bleibt man immer irgendwo stecken. Es funktioniert einfach nicht es aufzulösen..

Hat jemand eine Idee? Vielleicht gibt es einen Trick den man schon am Anfang machen kann. Oder eine spezielle Regel es zu lösen. Oder es gibt vielleicht sogar keinen linearen Ansatz für dieses Modell.

Danke für alle Vorschläge


        
Bezug
nichtlineare Regression: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:13 Fr 31.10.2008
Autor: leduart

Doppelpost

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]