www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - mehrmalige partielle Intergration
mehrmalige partielle Intergration < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrmalige partielle Intergration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Di 06.07.2004
Autor: andreas99

Hi,

ich hab Probleme bei einer Aufgabe die mit Hilfe zweimaliger partieller Integration zu lösen sein soll.

[mm] \integral_{}^{} {e^x \cdot cos (x) dx} [/mm]

Die erste partielle Integration hab ich so gemacht:

[mm] u(x)=e^x [/mm] , v'(x)=cos x , [mm] u'(x)=e^x [/mm] , v(x)=sin x

[mm] \integral_{}^{} {e^x \cdot cos (x) dx} [/mm] = [mm] e^x \cdot [/mm] sin x [mm] \cdot \integral_{}^{} {e^x \cdot sin (x) dx} [/mm]

Ist die erste Integration so richtig? Jetzt hab ich noch eine ganze Menge andere Integrationen gemacht, aber ich bekomme keine Form welche mit dem im Lösungsverzeichnis angegebene Stammintegral übereinstimmt.

Ergebnis soll sein:

[mm] F(x)=\bruch{1}{2} \cdot [/mm] (sin x + cos x)+C

Irgendwelche Lösungstips?

Gruß
Andreas

        
Bezug
mehrmalige partielle Intergration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Di 06.07.2004
Autor: sijaboeh

Hi

>ich hab Probleme bei einer Aufgabe die mit Hilfe zweimaliger partieller Integration zu lösen sein soll.
>Jetzt hab ich noch eine ganze Menge andere Integrationen gemacht, aber ich bekomme keine Form welche mit dem im >Lösungsverzeichnis angegebene Stammintegral übereinstimmt.

Ja, da ist der Hund begraben !
Wenn du 2-mal Integrierst, so wie du es versucht hast, bekommst du auch keine andere Form:

sin -> cos -> sin
e -> e -> e

>Irgendwelche Lösungstips?
Die Lösung: Phönix aus der Asche !


$ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = $ [mm] e^x \cdot [/mm] sin(x) $ - $ [mm] \integral_{}^{} {e^x \cdot sin(x) dx} [/mm] $
$ [mm] \integral_{}^{} {e^x \cdot sin(x) dx} [/mm] $ = $ [mm] -e^x \cdot [/mm] cos(x) $ + $ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $
Einsetzen ergibt:
$ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = $ [mm] e^x \cdot [/mm] sin(x) $ + $ [mm] e^x \cdot [/mm] cos(x) $ - $ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $
Umformen:
$ 2 [mm] \cdot \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = $ [mm] e^x \cdot [/mm] sin(x) + [mm] e^x \cdot [/mm] cos(x) $
Lösung :

$ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = [mm] $\bruch{1}{2}$ [/mm] ( $ [mm] e^x \cdot [/mm] sin(x) + [mm] e^x \cdot [/mm] cos(x) $ ) + C

Der Name bezeichnet die Technik, auf die Lösung schliessen zu können ohne das Integral wirklich direkt berechnet zu haben.
cu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]