www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - log-konvex-Funktionen
log-konvex-Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

log-konvex-Funktionen: Rechnung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:11 So 19.12.2004
Autor: nemo102

Hallo!

Bin gerade dabei den folgenden Satz durchzugehen:
Angenommen f(x) ist eine zweimal stetig diff.bare Funktion. Wenn die Ungleichung
f(x)>0,  [mm] f(x)f''(x)-(f'(x))^2 \ge [/mm] 0
gilt, dann f(x) ist log-konvex.

In meinem vorliegenden Beweis heißt es, dass der zweite abgeleitete log f(x) den Wert
[mm] \bruch{f(x)f''(x)-(f'(x))^2}{(f(x))^2} [/mm]
hat.

Hab den Wert jetzt schon mehrmals nachgerechnet und komme einfach nicht drauf. Kann mir da jemand von euch helfen und mir die Rechenschritte explizit aufschreiben?

Gruß Nemo





        
Bezug
log-konvex-Funktionen: deutlicher Hinweis
Status: (Antwort) fertig Status 
Datum: 15:50 So 19.12.2004
Autor: Peter_Pein

Hallo Nemo,
ich habe immer ein schlechtes Gewissen, wenn ich Lösungen "vorsage". Deshalb nur eine Anleitung:

erste Ableitung: mit Kettenregel (auch bekannt als "innere mal äußere").
zweite Ableitung: Quotientenregel

zur Erinnerung:
[mm] (\bruch{f(x)}{g(x)})'=\bruch{f'(x)*g(x)+f(x)*g'(x)}{g(x)^{2}} [/mm]

und nun noch "sehen", was Du für f bzw. g dort einsetzen mußt.

Ich hoffe, dass es Dir hilft,
Peter


Bezug
        
Bezug
log-konvex-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Mo 20.12.2004
Autor: nemo102

Hallo!

Danke für die Antwort! Hab es nachgerechnet und bin drauf gekommen!

Gruß Silke



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]