www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - lösen von gleichungen
lösen von gleichungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lösen von gleichungen: Frage
Status: (Frage) beantwortet Status 
Datum: 22:03 Mi 12.01.2005
Autor: netti

hallo ihr!
Wie komme ich von der gleichung z³+3iz²-3z-9i=0  auf die werte -3i,  [mm] \wurzel{3} [/mm]
Brauch ich dafür eine bestimme gleichung?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
gruß netti

        
Bezug
lösen von gleichungen: Möglicher Hinweis ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:13 Mi 12.01.2005
Autor: Faenol

Hi !

Weiß nicht ob dir das was bringt, aber:

z³+3iz²-3z-9i=0  auf die  werte z=-3i, z= [mm] \wurzel{3} [/mm]

[mm] z^{3}+3iz^{2}-3z-9i=z^{3}+3iz^{2}+3zi^{2}+9i^{3}=0 [/mm]

Faenôl

Bezug
        
Bezug
lösen von gleichungen: Faktorisieren
Status: (Antwort) fertig Status 
Datum: 23:34 Mi 12.01.2005
Autor: moudi

Hallo Nanett

Für Gleichungen dritten Grades gibt es schon Lösungsformeln. Sie sind aber recht aufwändig.
Eine andere Möglichkeit ist zu versuchen das Polynom auf der linken Seite zu faktorisieren.

Es fällt auf, dass in zwei Summande die imaginäre Einheit  i auftritt und in zwei Summanden nicht.
Umgruppieren führt zu:
[mm] $z^3+3iz^2-3z-9i=z^3-3z+3iz-9i$ [/mm]

Jetzt will man natürlich ausklammern in jedem Teil.

[mm] $=z(z^2-3)+3i(z^2-3)=(z+3i)(z^2-3)$ [/mm]

Die Gleichung lässt sich daher schreiben als [mm] $(z+3i)(z^2-3)=0$. [/mm]

Der Rest sollte jetzt (hoffentlich) klar sein :-)

mfG Moudi

Bezug
        
Bezug
lösen von gleichungen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 14:49 Do 13.01.2005
Autor: FriedrichLaher

Hallo, alle,

damit eine komplexe Zahl z=0 ist muß sowohl Im(z)=0 als auch Re(z)=0 gelten
damit
kommt man, seltsamerweise auch auf die falsche Lösung z=0,
und
auf die richtigen [mm] $\pm \sqrt{3}$, [/mm]
aber
durch Polynomdivision (z³ + 3z²i - 3z - 9i) : (z² - 3) auch auf die 3te richtige

Bezug
                
Bezug
lösen von gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:55 Fr 14.01.2005
Autor: moudi

Dass eine komplexe Zahl genau dann Null ist, wenn Realteil und Imaginärteil Null ist, ist schon richtig. Nur nützt dass einem nicht viel. Denn daraus folgt nicht dass der Realteil von [mm] $z^3 [/mm] + 3z^2i - 3z - 9i$ gleich [mm] $z^3-3z$ [/mm] ist, da z selber eine komplexe Zahl ist. (Analog ist der Imaginärteil nicht [mm] $i(3z^2-9)$). [/mm] So habe ich deine Bemerkung aufgefasst, dass man "seltsamerweise auch auf die falsche Lösung z=0" kommt.
Das gilt nur, wenn z selber eine reelle Zahl ist. Man erhält also durch diese Ueberlegung nur die reellen Lösungen der Gleichung und diese Lösungen müssen gleichzeitig beide Gleichungen [mm] $z^3-3z=0$ [/mm] und [mm] $3z^2-9=0$ [/mm] erfüllen.

Da die ursprüngliche Gleichung tatsächlich reelle Lösungen hat, kommt man mit dieser Methode in diesem Fall weiter.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]