www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - lineare DGL 2.Ordnung
lineare DGL 2.Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare DGL 2.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Fr 28.01.2011
Autor: LordPippin

Hallo,
ich möchte folgende DGL lösen: 2y''+4y'+10y=x.
Als Lösung habe ich [mm] y(x)=e^{-x}cos(2x)+e^{-x}sin(-2x)+\bruch{1}{50}(10x-4) [/mm]
was bei der Probe aber 2x ergibt.
Richtig wäre laut WolframAlpha: [mm] y(x)=e^{-x}cos(2x)+e^{-x}sin(-2x)+\bruch{1}{50}(5x-2) [/mm]

Ich habe schon zweimal nachgerechnet, komme aber immer wieder auf [mm] \bruch{1}{50}(10x-4) [/mm]

Hier mal mein Rechenweg in Kürze:

charakteristische Gleichung:
[mm] 2\lambda^2+4\lambda+10=0 [/mm]
=> [mm] \lambda=-1+2i [/mm]  &  [mm] \overline{\lambda}=-1-2i [/mm]
=> [mm] y_1(x)=e^{-x}cos(-2x) [/mm]   und     [mm] y_2(x)=e^{-x}sin(-2x) [/mm]

Für die partikuläre Lösung:
[mm] y_p(x)=c_1(x)y_1(x)+c_2(x)y_2(x) [/mm]
Nach Satz:
[mm] c_k(x)=(-1)^{n+k}\integral_{}^{}{\bruch{det y_{nk}(x)}{det y(x)}b(x) dx} [/mm]
[mm] y_{nk}(x) [/mm] -> entsteht aus y(x) durch Streichen der n-ten Zeile und der k-ten Spalte.

[mm] y(x)=\pmat{ e^{-x}cos(-2x) & e^{-x}sin(-2x) \\ -e^{-x}cos(-2x)+2e^{-x}sin(-2x) & -e^{-x}sin(-2x)-2e^{-x}cos(-2x) } [/mm]

[mm] dety(x)=-2e^{-2x} [/mm]

[mm] dety_{n1}(x)=y_2(x) [/mm]
[mm] dety_{n2}(x)=y_1(x) [/mm]

=> [mm] c_1(x)=-\bruch{1}{50}e^x((5x+3)sin(2x)+(4-10x)cos(2x)) [/mm]
[mm] c_2(x)=-\bruch{1}{50}e^x(2(5x-2)sin(2x)+(5x+3)cos(2x)) [/mm]

=> [mm] y(x)=y(x)=e^{-x}cos(2x)+e^{-x}sin(-2x)+\bruch{1}{50}(10x-4) [/mm]

Vielleicht sieht einer meinen Fehler.

Gruß LordPippin

        
Bezug
lineare DGL 2.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Fr 28.01.2011
Autor: MathePower

Hallo LordPippin,


> Hallo,
>  ich möchte folgende DGL lösen: 2y''+4y'+10y=x.
>  Als Lösung habe ich
> [mm]y(x)=e^{-x}cos(2x)+e^{-x}sin(-2x)+\bruch{1}{50}(10x-4)[/mm]
>  was bei der Probe aber 2x ergibt.
>  Richtig wäre laut WolframAlpha:
> [mm]y(x)=e^{-x}cos(2x)+e^{-x}sin(-2x)+\bruch{1}{50}(5x-2)[/mm]
>  
> Ich habe schon zweimal nachgerechnet, komme aber immer
> wieder auf [mm]\bruch{1}{50}(10x-4)[/mm]
>  
> Hier mal mein Rechenweg in Kürze:
>  
> charakteristische Gleichung:
>  [mm]2\lambda^2+4\lambda+10=0[/mm]
>  => [mm]\lambda=-1+2i[/mm]  &  [mm]\overline{\lambda}=-1-2i[/mm]

>  => [mm]y_1(x)=e^{-x}cos(-2x)[/mm]   und     [mm]y_2(x)=e^{-x}sin(-2x)[/mm]

>  
> Für die partikuläre Lösung:
>  [mm]y_p(x)=c_1(x)y_1(x)+c_2(x)y_2(x)[/mm]
>  Nach Satz:
>  [mm]c_k(x)=(-1)^{n+k}\integral_{}^{}{\bruch{det y_{nk}(x)}{det y(x)}b(x) dx}[/mm]
>  
> [mm]y_{nk}(x)[/mm] -> entsteht aus y(x) durch Streichen der n-ten
> Zeile und der k-ten Spalte.
>  
> [mm]y(x)=\pmat{ e^{-x}cos(-2x) & e^{-x}sin(-2x) \\ -e^{-x}cos(-2x)+2e^{-x}sin(-2x) & -e^{-x}sin(-2x)-2e^{-x}cos(-2x) }[/mm]
>  
> [mm]dety(x)=-2e^{-2x}[/mm]
>  
> [mm]dety_{n1}(x)=y_2(x)[/mm]
>  [mm]dety_{n2}(x)=y_1(x)[/mm]
>  
> => [mm]c_1(x)=-\bruch{1}{50}e^x((5x+3)sin(2x)+(4-10x)cos(2x))[/mm]
>  [mm]c_2(x)=-\bruch{1}{50}e^x(2(5x-2)sin(2x)+(5x+3)cos(2x))[/mm]
>  
> =>
> [mm]y(x)=y(x)=e^{-x}cos(2x)+e^{-x}sin(-2x)+\bruch{1}{50}(10x-4)[/mm]
>  
> Vielleicht sieht einer meinen Fehler.


Offenbar hast Du bei der Berechnung der [mm]c_{k}, \ k=1,2[/mm]  für

[mm]b\left(x\right)=x[/mm]

verwendet.

Das ist nicht richtig.

Verwendest Du bei der Berechnung der [mm]c_{k}, \ k=1,2[/mm]  für

[mm]b\left(x\right)=\red{\bruch{1}{2}}x[/mm]

, dann kommt auch das heraus, was Wolfram-Alpha zu Tage fördert.

Kurzum, Du musst dafür sorgen, daß der Koeffizient vor y'' zu 1 wird.


>  
> Gruß LordPippin


Gruss
MathePower

Bezug
                
Bezug
lineare DGL 2.Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Fr 28.01.2011
Autor: LordPippin

Vielen Dank, MathePower.
Ich habe tatsächlich vergessen die DGL in die richtige Form zu bringen (Koeffizient vor y'' war die ganze Zeit 2). Nur bei der charakteristischen Gleichung ist es ja egal, weshalb es mir nicht auffiel.

Gruß

LordPippin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]