www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - konvergenz
konvergenz < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Mi 17.06.2009
Autor: martinii

Aufgabe
Zeigen Sie, dass die Reihe [mm] \summe_{n=0}^{\infty} z^n [/mm] für [mm] z\inC [/mm] mit |z| < 1 Konvergiert

Hallo Leute,

Leider hab ich nicht so viel ahnung wie ich das machen soll.

da [mm] z^n [/mm] steht, hab ich mir gedacht, das es was mit der geometrischen Reihe zu tun haben könnte. Allerdring bringt mich das nicht gerade weiter.

[mm] \summe_{n=0}^{\infty} z^n [/mm]  = 1/(1-z)  Aber wie mache ich weiter, falls das der richtige Weg ist.

Außerdem wenn ich ja zeig, das die Reihe absolut konvergiert muss ja auch die Reihe normal konvergieren. --> |z| = [mm] \wurzel{x^2+y^2} [/mm] wenn z=x+yi ist.
daraus würde ja folgen

[mm] \summe_{n=0}^{\infty} z^n [/mm]  = [mm] (\wurzel{x^2+y^2})^n. [/mm]  Aber da weiß ihc auch nicht mehr weiter.

Vll kann mir ja jdm von euch helfen.

Danke schon mal.

Martina


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 07:34 Do 18.06.2009
Autor: ms2008de

Hallo,
Also zum einen könntest du per Induktion zeigen, dass für [mm] s_{n}=\summe_{k=0}^{n} z^{k}= \bruch{1-z^{n+1}}{1-z}. [/mm] Des weiteren muss natürlich gelten, dass [mm] a_{n}=z^{n} \forall|z|<1, [/mm] z [mm] \in \IC [/mm]  gegen 0  konvergiert, damit das notwendige Kriterium [mm] (a_{n} [/mm] muss Nullfolge sein,) erfüllt ist.
Ich helf dir mal dabei: [mm] Vor.:a_{n}= z^{n}, [/mm] z [mm] \in \IC [/mm] fest
Beh.: [mm] a_{n}\to [/mm] 0 falls |z|<1
Bew.: Sei [mm] \varepsilon>0 [/mm] bel. aber fest. Wähle x= [mm] \bruch{1}{|z|} [/mm] -1 >0 und N>... . Für n [mm] \ge [/mm] N gilt: [mm] |z^{n} [/mm] -0| [mm] =|z^{n}|=|z|^{n} =\bruch{1}{(1+x)^{n}}. [/mm] Wenn du das nun nach Bernoulli-Ungleichung abschätzt, solltest du auf den Rest kommen.
Wenn du zeigen konntest, dass [mm] z^{n} [/mm] Nullfolge ist, kannst du daraus folgern, dass [mm] 1-z^{n+1} [/mm] für n [mm] \to \infty [/mm] gegen 1 geht und somit die gesamte Reihe gegen [mm] \bruch{1}{1-z} [/mm] strebt.

Viele Grüße

Bezug
                
Bezug
konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Do 18.06.2009
Autor: martinii

ok.
ich probier das mal ob ich drauf komm.

vielen dank für deine hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]