www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - kleinster abstand analysis
kleinster abstand analysis < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kleinster abstand analysis: ableiten
Status: (Frage) beantwortet Status 
Datum: 18:09 Mi 06.09.2006
Autor: LaLune

Analysislösung gefordert:
Der Term für den geringsten Abtand zwischen einen Pkt und einer Geraden habe ich ausgerechnet und der lautet wie folgt.
mein problem ist jetzt, dass ich nicht weiß, wie diesen Ausdruck ableiten soll (1. und später 2.Ableitung bilden)

h=Wurzel aus((4*t)²+(4*t)²+(-7+5t)²)

        
Bezug
kleinster abstand analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Mi 06.09.2006
Autor: Mato

Hallo!
Ich gehe davon aus, dass du folgende Funktion meinst:
[mm] h(t)=\wurzel{(4*t)²+(4*t)²+(-7+5t)²)} [/mm]
Am besten kannst du diese Funktion ableiten, wenn du [mm] \wurzel{(4*t)²+(4*t)²+(-7+5t)²)} [/mm] als Potenz darstellst, also [mm] ((4*t)²+(4*t)²+(-7+5t)²)^{0.5} [/mm]
Nun kann man nach der Kettenregel die Funktion einfach ableiten, d.h.
dann innere Ableitung mal der aüßeren Ableitung.
Jetzt müsste es doch klappen oder?




Bezug
        
Bezug
kleinster abstand analysis: Ergänzung zu Mato
Status: (Antwort) fertig Status 
Datum: 19:13 Mi 06.09.2006
Autor: ardik

Und Du solltest vorm Ableiten noch ein wenig unter der Wurzel vereinfachen und zusammenfassen.
Denk auch dran, dass die Klammer als binomische Formel aufzudröseln ist.

Schöne Grüße,
ardik

Bezug
                
Bezug
kleinster abstand analysis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Mi 06.09.2006
Autor: riwe

und noch einfacher wird es, wenn du das extremum von d² suchst, dann "ersparst" du dir die wurzel

Bezug
                
Bezug
kleinster abstand analysis: lösung
Status: (Frage) beantwortet Status 
Datum: 19:53 Mi 06.09.2006
Autor: LaLune

[mm] (16t²+16t²+49-70t+25t²)^0,5 [/mm]

[mm] (57t²-70t+49)^0,5 [/mm]

1.ableitung

[mm] 114t-70*0,5*(57t²-70t²+49)^0,5 [/mm]

dann klammerausdruck hoch 0,5 nehmen, ergebnis mit 35 multiplizieren

Bezug
                        
Bezug
kleinster abstand analysis: wurzel weglassen
Status: (Frage) beantwortet Status 
Datum: 19:54 Mi 06.09.2006
Autor: LaLune

wie geschreiben, kann ich ja auch die wurzel weglassen, was mus ihc denn dann beachten? kann ich da immer machen? kann mir jemand ein beispiel geben?

Bezug
                                
Bezug
kleinster abstand analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Mi 06.09.2006
Autor: riwe

ja das kannst du immer machen, du erhältst dabei denselben wert für die nullstelle der ableitung.
versuche es doch an deiner aufgabe.

Bezug
                                
Bezug
kleinster abstand analysis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:52 Mi 06.09.2006
Autor: Zwerglein

Hi, LaLune,

> wie geschreiben, kann ich ja auch die wurzel weglassen, was
> mus ihc denn dann beachten? kann ich da immer machen? kann
> mir jemand ein beispiel geben?

Ich will's Dir mal anschaulich klarmachen:

Die Wurzel stellt ja den Abstand zweier Punkte dar, also eine Strecke.
Wenn Du sie nun quadrierst (das Wurzelzeichen weglässt!), dann hast Du anschaulich das Quadrat über dieser Strecke gezeichnet.

Nun suchst Du ja von allen Strecken die kürzeste.
Das ist aber gleichbedeutend damit, von allen Quadraten das kleinste zu suchen: Über der kürzesten Strecke liegt auch das kleinstmögliche Quadrat.

Alles klar?

mfG!
Zwerglein

Bezug
                        
Bezug
kleinster abstand analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Mi 06.09.2006
Autor: Zwerglein

Hi, LaLune,

> [mm](16t²+16t²+49-70t+25t²)^0,5[/mm]
>  
> [mm](57t²-70t+49)^0,5[/mm]

Richtig!
  

> 1.ableitung
>  
> [mm]114t-70*0,5*(57t²-70t²+49)^0,5[/mm]

1. Bitte Klammern setzen
2. Hochzahl wird um 1 kleiner, also: -0,5

Richtig wäre demnach:

[mm] f'(x)=(114t-70)*0,5*(57t²-70t²+49)^{-0,5} [/mm] = [mm] \bruch{57t - 35}{\wurzel{57t^{2}-70t+49}} [/mm]

Aber wie gesagt: Eigentlich geht's einfacher!

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]