www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - jordanblöcke
jordanblöcke < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

jordanblöcke: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:40 Di 16.05.2006
Autor: trixi86

Aufgabe
Sei f : V [mm] \to [/mm] V ein Endomorphismus eines endlich dimensionalen K-Vektorraums V . Wir nehmen an, dass  [mm] \delta [/mm] f(X) (charakteristische polynom) über K vollständig in Linearfaktoren zerfällt. Sei
[mm] A_{f,B,B} [/mm] die Jordansche Normalform von f bezüglich einer Basis B. Sei  [mm] \delta_{f} (\alpha) [/mm] = 0
für ein  [mm] \alpha \in [/mm] K und [mm] V_{ \alpha} [/mm] der zugehörige Eigenraum. Zeigen Sie:
[mm] dimKV_{ \alpha} [/mm] = 1  [mm] \gdw [/mm] In [mm] A_{f,B,B} [/mm] gibt es genau einen Jordanblock zum Eigenwert [mm] \alpha [/mm] .

hallo ihr
also ich hab mal ne frage zu der aufgabe. und zwar weiß ich dass die geometrisch VFH eines eigenwertes immer gleich der dimension des dazugehörigen eigenraumes ist. ich weiß auch wie ich die jordan normalform zu einer martix bestimme, allerdings verwende ich das in der aufgabe gefragte dazu einfach nur, wenn ein eigenraum dim 2 hat und die algeb. VFH auch 2 ist dann weiß ich dass es 2 1x1 jordankästchen sein müssen, bzw immer wenn die dim des eigenraumes 1 ist gibt es ein jordankästchen zu dem dazugehörigen eigenwert. aber wie kann ich das beweisen? hat das irgendwas damit zutun dass die vektoren linear unabhängig sein müssen? oder bin ich da auf dem totalen holzweg.

wäre dankbar wenn mir jemand hefen könnte diese aufgabe zu beweisen.

gruß trixi

        
Bezug
jordanblöcke: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 18.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]