invertierbare Matrix < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage noch in keinem anderem Forum gestellt.
Hallo erstmal,
mein Name ist Michael und ich studiere seit kurzem Chemie. Nun hab ich ne Aufgabe, die ich lösen soll, mit der ich nicht so ganz klar komme. Ich soll für folgende Matrix B = [mm] \pmat{ t & 4 & 3 \\ 1 & t+3 & -2 \\ 0 & 0 & t-2 } [/mm] alle t [mm] \varepsilon [/mm] R bestimmen für die R invertierbar ist.
Ich hab dann mal angefangen die Inverse der Matrix B zu bestimmen und wenn ich mich nicht verrechnet habe, dann komme ich auf
[mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } \pmat{ \bruch{-t-3}{4-3t-t^2} & \bruch{t^2-3}{4-3t-t^2} & \bruch{2t^4+18t^3+18t^2-24t}{2t^2-t-6} \\ \bruch{1}{4-3t-t^2} & \bruch{-t}{4-3t-t^2} & \bruch{4-3t-t^2}{2t^2-t-6} \\ 0 & 0 & \bruch{1}{t-2} } [/mm] (ist zwar nicht die ideale Darstellung, aber ich denke man sieht was ich meine). Nur sieht das erstens nicht so ganz richtig aus und zweitens hab ich jetzt auch keine Ahnung mehr wie ich weiterrechnen soll. Wie bekomm ich denn die ts raus, für die B invertierbar ist? Schon mal besten dank für die Hilfe im vorraus. Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:34 So 05.06.2005 | Autor: | Macho |
tach,
also Maple gibt mir als Inverse eine andere Matrix, kann also sein dass du dich irgendwo verrechnet hast :)
Und bzgl. den t's die du suchst, guck dir die Brüche mal genau an. Ich würde sagen, wenn der Nenner zu Null wird ist der Spass nicht invertierbar
Hier die Lösung von Maple, (hoffe habs richtig abgetippt)
$ [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } \pmat{ \bruch{t+3}{t^2+3t-4} & \bruch{-4}{t^2+3t-4} & \bruch{-3t-17}{t^3+t^2-10t+8} \\ \bruch{-1}{t^2+3t-4} & \bruch{t}{t^2+3t-4} & \bruch{2t+3}{t^3+t^2-10t+8} \\ 0 & 0 & \bruch{1}{t-2} }$
[/mm]
MfG Mahzuni
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 04:16 So 05.06.2005 | Autor: | NECO |
Hallo. Ich finde das alles nicht so. Wieso suchst du dir die Inverse.?
Hast du schon mal was von Determinate gehört?
Wann ist eine Matrix invertierbar?
Kennst du die Regel von Sarus?
Diese fragen muss ich dir stellen. denn das brauchst du.
Finde die Determinante mit Sarus regel. Dann hast du ja so eine Polynom. Dann musst du nur noch die Nullstellen von deinem Polynom zu finden. Schmeiß die Nullstellen raus, fertig aus
Schöne Grüße
NECO
|
|
|
|
|
Ich habe jetzt nach dem Satz von Sarus die Lösung für die Determinante ausgerechnet und [mm] t^3+t^2-10t+8 [/mm] herausbekommen. Das hab ich dann gleich Null gesetzt und hab die drei Nullstellen t1= -4; t2= 1 und t3= 2 rausbekommen. Und sollen jetzt alle R Lösungen außer t1, t2 und t3 sein? Bei meiner Rechnung kann das aber auch nicht ganz stimmen (es sei denn ich habe mich da schon wieder verrechnet), denn für t2= 1 bekomme ich keine Inverse herraus, für t1= -4 hingegen schon. Außerdem soll ich für alle t für die es eine Determinante gibt auch diese ausrechnen und daher muss es ja eine endliche Zahl sein. Könnt ihr mir da bitte nochmals weiterhelfen?
|
|
|
|
|
ich hab jetzt noch ein bischen rumgerechnet. mit den werten t1= -4, t2= 1 und t2= 2 ist die Matrix nicht invertierbar, aber wie es aussieht für alle andern Werte. Allerdings steht in der Aufgabe, dass ich für alle t für die t invertierbar ist die Inverse. Das stellt sich nur etwas schwierig dar, da diese t ja eine unendliche Menge ist. Kann mir jemand sagen wie man sowas macht? Vielleicht einfach die Inverse mit dem Parameter t? Vielen Dank schonmal.
|
|
|
|
|
Hallo,
> Ich habe jetzt nach dem Satz von Sarus die Lösung für die
> Determinante ausgerechnet und [mm]t^3+t^2-10t+8[/mm] herausbekommen.
> Das hab ich dann gleich Null gesetzt und hab die drei
> Nullstellen t1= -4; t2= 1 und t3= 2 rausbekommen. Und
> sollen jetzt alle R Lösungen außer t1, t2 und t3 sein? Bei
> meiner Rechnung kann das aber auch nicht ganz stimmen (es
> sei denn ich habe mich da schon wieder verrechnet), denn
> für t2= 1 bekomme ich keine Inverse herraus, für t1= -4
> hingegen schon. Außerdem soll ich für alle t für die es
> eine Determinante gibt auch diese ausrechnen und daher muss
> es ja eine endliche Zahl sein. Könnt ihr mir da bitte
> nochmals weiterhelfen?
Da haste Dich verrechnet, obige Lösung stimmt nämlich. Für t = -4, 1, 2 nimmt die Determinante den Wert 0 an.
Gruß
MathePower
|
|
|
|
|
Danke erstmal, aber wie rechne ich denn nun für alle t die invertierbar sind auch die Inverse aus? Das ist mein eigentliches Problem. In meiner Aufgabe steht "berechnen Sie für alle t für die B inverterbar ist die Inverse B^-1". Aber da es ja unendlichviele t gibt, auf die das zutrifft weiß ich nun nicht wie ich das machen soll.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:47 So 05.06.2005 | Autor: | Stefan |
Hallo Michael!
Du hast doch für alle $t$, für die es eine Inverse gibt, diese schon mit maple berechnen lassen. Insofern bist du fertig.
Für die drei genannten $t$ gilt diese Formel nicht, da es sich dabei um Nullstellen des Nenners in einigen Koeffizienten handelt.
Also: Aufgabe erledigt!
Viele Grüße
Stefan
|
|
|
|
|
ok, vielen Dank für die Hilfe
|
|
|
|