inversmonotone Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hi,
kurze Freage zum Beweis des folgenden Sachverhaltes:
Eine Matrix heißt inversmonoton, wenn aus [mm]Ax\leq Ay[/mm] folgt [mm]x\leq y[/mm] (Halbordnung im [mm]\IR^n[/mm]).
[mm]A[/mm] ist genau dann inversmonoton, wenn [mm]A^{-1}[/mm] existiert und [mm]A^{-1}\geq 0[/mm] gilt.
Ok, "[mm]\Leftarrow[/mm]" scheint mit einfach: wenn [mm]A^{-1}[/mm] existiert und [mm]A^{-1}\geq 0[/mm] gilt, dann folgt aus [mm]Ax\leq Ay[/mm], [mm]A^{-1}Ax\leq A^{-1}Ay[/mm] und somit [mm]x\leq y[/mm] für [mm]x,y\in\IR^n[/mm].
"[mm]\Rightarrow[/mm]": Kann mir bitte hier jemand helfen. Vor allem ist mir unklar, wie man auf die Existenz der Inversen schließt. Wenn man die hat, ist der zweite Punkt sicher nicht allzu schwer.
Vielen Dank schonmal im Voraus
28
|
|
|
|
Hallo!
[mm] $A^{-1}\ge [/mm] 0$ heißt bei dir [mm] $x\ge [/mm] 0\ [mm] \Rightarrow [/mm] \ [mm] A^{-1}x\ge [/mm] 0$, oder?
Um zu zeigen, dass eine Inverse existiert, genügt es nach dem Satz von Kern und Bild zu zeigen, dass $A$ injektiv ist.
Nehmen wir also an, dass es ein [mm] $x\in \IR^n$ [/mm] gibt, so dass $Ax=0$. Dann ist $0=Ax$, also [mm] $0\le [/mm] x$. Insbesondere ist aber auch $0=A(-x)$, also [mm] $0\le [/mm] -x$. Wegen der Antisymmetrie von [mm] $\le$ [/mm] folgt $x=0$.
Kommst du jetzt weiter?
Gruß, banachella
|
|
|
|
|
Hi,
danke für den Versuch, aber [mm]A^{-1}\geq0[/mm] soll heißen [mm]\tilde{a}_{ij}\geq0\; \forall i,j[/mm], wenn [mm]A^{-1}=(\tilde{a}_{ij})_{i,j}[/mm], [mm]A^{-1}[/mm] hat also nur positive Einträge.
Ansonsten ist mir die Existenz klar, danke.
28
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:49 Di 13.09.2005 | Autor: | Julius |
Hallo!
> danke für den Versuch,
Es ist wesentlich mehr als ein Versuch, nämlich die Antwort auf den ersten Teil deiner Frage, da die Fehlinterpretation von [mm] $A^{-1} \ge [/mm] 0$ gar nicht in den Beweis einging.
> aber [mm]A^{-1}\geq0[/mm] soll heißen
> [mm]\tilde{a}_{ij}\geq0\; \forall i,j[/mm], wenn
> [mm]A^{-1}=(\tilde{a}_{ij})_{i,j}[/mm], [mm]A^{-1}[/mm] hat also nur positive
> Einträge.
Gut, also zum zweiten Teil der Frage: Sei [mm] $A^{-1} [/mm] = [mm] (\tilde{a_{ij}})_{i,j=1,\ldots,n}$. [/mm] Nehmen wir an, es gäbe ein Paar $(i,j)$ mit [mm] $\tilde{a_{ij}}<0$. [/mm] Dann wäre $A0 = 0 [mm] \le e_j [/mm] = [mm] A(A^{-1}ej)$, [/mm] aber nicht
$0 [mm] \le A^{-1}e_j [/mm] = [mm] \pmat{ \tilde{a_{1j}} \\ \vdots \\ \tilde{a_{nj}} }$,
[/mm]
Widerspruch.
Viele Grüße
Julius
|
|
|
|