www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - inverse einer 2X2 matrix
inverse einer 2X2 matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inverse einer 2X2 matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mi 06.07.2011
Autor: jim-bob

Aufgabe
bestimmen sie zu den gegebenen matrizen die jeweilige inverse.

D= [mm] \pmat{ 5 & -3 \\ 2 & 4 } [/mm]

hallo...

also meine frage ist, ob dies die richtige lösung ist:

detD=26

D^-1= (1/detD) * A*

[mm] A*=(a_ij)^T [/mm] (das soll A sternchen heißen)

so für meine a_ij habe ich folgendes berechnet:

a_11=-1det [mm] \pmat{ 1 & 0 \\ 0 & 4 } [/mm] =4
a_12=-1det [mm] \pmat{ 1 & 0\\ 0 & 2 } [/mm] =2
a_21=-1det [mm] \pmat{ 1 & 0 \\ 0 & -3 } [/mm] =-3
a_22=-1det [mm] \pmat{ 1 & 0 \\ 0 & 5 } [/mm] =5

so das ich für a_ij = [mm] \pmat{ 4 & 2 \\ -3 & 5 } [/mm] bekommen.
[mm] (a_ij)^T [/mm] = [mm] \pmat{ 4 & -3 \\ 2 & 5} [/mm]

D^-1 =-1/26 [mm] \pmat{ 4 & -3 \\ 2 & 5} [/mm]

ist das so richtig???

haben sonst nur mit 3X3 matrizen gerechnet..


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
inverse einer 2X2 matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Mi 06.07.2011
Autor: schachuzipus

Hallo jim-bob,

> bestimmen sie zu den gegebenen matrizen die jeweilige
> inverse.
>
> D= [mm]\pmat{ 5 & -3 \\ 2 & 4 }[/mm]
> hallo...
>
> also meine frage ist, ob dies die richtige lösung ist:
>
> detD=26
>
> D^-1= (1/detD) * A*
>
> [mm]A*=(a_ij)^T[/mm] (das soll A sternchen heißen)

Nee, [mm]A^{\star}[/mm] ist doch die Adjunkte und nicht die Transponierte.

Für [mm]2\times 2[/mm]-Matrizen gibts eine einfache Formel:

[mm] $A=\pmat{a&b\\c&d}\Rightarrow A^{\star}=\pmat{d&-b\\-c&a}& [/mm]

>
> so für meine a_ij habe ich folgendes berechnet:
>
> a_11=-1det [mm]\pmat{ 1 & 0 \\ 0 & 4 }[/mm] =4
> a_12=-1det [mm]\pmat{ 1 & 0\\ 0 & 2 }[/mm] =2
> a_21=-1det [mm]\pmat{ 1 & 0 \\ 0 & -3 }[/mm] =-3
> a_22=-1det [mm]\pmat{ 1 & 0 \\ 0 & 5 }[/mm] =5
>
> so das ich für a_ij = [mm]\pmat{ 4 & 2 \\ -3 & 5 }[/mm] bekommen.
> [mm](a_ij)^T[/mm] = [mm]\pmat{ 4 & -3 \\ 2 & 5}[/mm]
>
> D^-1 =-1/26 [mm]\pmat{ 4 & -3 \\ 2 & 5}[/mm]

Wieso [mm]\red{-}\frac{1}{26}[/mm] ?

Und in der Matrix sind noch Vorzeichenfehler:

Richtig: [mm]D^{-1}=\frac{1}{26}\pmat{4&3\\ -2&5}[/mm]

>
> ist das so richtig???
>
> haben sonst nur mit 3X3 matrizen gerechnet..
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]