www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - inhomogene Diff-Gl
inhomogene Diff-Gl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inhomogene Diff-Gl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Di 07.02.2012
Autor: zoj

Aufgabe
Lösen Sie das folgende Anfangswertproblem:
[mm] \vektor{\dot{x_{1}}\\\dot{x_{2}}} [/mm] = [mm] \frac{1}{2}\pmat{7 & 1 \\ -1 & 5}\vektor{x_{1}\\x_{2}}+\vektor{2\\-4}, x_{1}(0)=2, x_{2}(0)=1. [/mm]

Habe eine Frage zu der Eigenwertzerlegung von A = [mm] VJV^{-1}. [/mm]

[mm] J=\pmat{ 3 & 1 \\ 0 & 3 } [/mm]

Woher kommt die 1 in der oberen rechten Ecke?
Bei der Eigenwertzerleguing von homogenen DGL's standen die Eigenwerte auf der Diagonalen, die restlichen Werte waren Null.



        
Bezug
inhomogene Diff-Gl: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Di 07.02.2012
Autor: donquijote


> Lösen Sie das folgende Anfangswertproblem:
>  [mm]\vektor{\dot{x_{1}}\\\dot{x_{2}}}[/mm] = [mm]\frac{1}{2}\pmat{7 & 1 \\ -1 & 5}\vektor{x_{1}\\x_{2}}+\vektor{2\\-4}, x_{1}(0)=2, x_{2}(0)=1.[/mm]
>  
> Habe eine Frage zu der Eigenwertzerlegung von A =
> [mm]VJV^{-1}.[/mm]
>  
> [mm]J=\pmat{ 3 & 1 \\ 0 & 3 }[/mm]
>  
> Woher kommt die 1 in der oberen rechten Ecke?
>  Bei der Eigenwertzerleguing von homogenen DGL's standen
> die Eigenwerte auf der Diagonalen, die restlichen Werte
> waren Null.
>  
>  

Stichwort Jordansche Normalform
Diese Matrix ist nicht diagonalisierbar, da 3 als einziger Eigenwert die geometrische Vielfachheit 1 hat, es gibt somit keine Basis aus Eigenvektoren.

Bezug
                
Bezug
inhomogene Diff-Gl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Di 07.02.2012
Autor: zoj

Aha,
dann würde also theoretisch bei einer nicht Daigonasisierbaren Matrix mit dem doppelten Eigenwert a folgende Jordanmatrix rauskommen: [mm] \pmat{a & 1\\0 & a} [/mm]
richtig?


V= [mm] \pmat{1&1 \\ -1 & 1} [/mm] , [mm] V^{-1} =\pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}} [/mm]
=>  [mm] \pmat{1&1 \\ -1 & 1} \pmat{e^{3t}&te^{3t}\\0&e^{3t}} \pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}}\vektor{x1(0)\\x2(0)} [/mm]
Was mich bei der weiteren Rechnung aufhält, ist das [mm] te^{3t}. [/mm] Sollte da nicht [mm] e^{t} [/mm] stehen?



Bezug
                        
Bezug
inhomogene Diff-Gl: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Di 07.02.2012
Autor: donquijote


> Aha,
>  dann würde also theoretisch bei einer nicht
> Daigonasisierbaren Matrix mit dem doppelten Eigenwert a
> folgende Jordanmatrix rauskommen: [mm]\pmat{a & 1\\0 & a}[/mm]
>  
> richtig?

ja

>  
>
> V= [mm]\pmat{1&1 \\ -1 & 1}[/mm] , [mm]V^{-1} =\pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}}[/mm]
>  
> =>  [mm]\pmat{1&1 \\ -1 & 1} \pmat{e^{3t}&te^{3t}\\0&e^{3t}} \pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}}\vektor{x1(0)\\x2(0)}[/mm]

>  
> Was mich bei der weiteren Rechnung aufhält, ist das
> [mm]te^{3t}.[/mm] Sollte da nicht [mm]e^{t}[/mm] stehen?

Das System [mm] \vektor{x'\\y'}=\pmat{a & 1\\0 & a}\vektor{x\\y} [/mm] hat Lösungen der Form
[mm] \vektor{x\\y}=\vektor{t*e^{at}\\e^{at}} [/mm] und [mm] \vektor{x\\y}=\vektor{e^{at}\\0} [/mm]
(und Linearkombinationen davon), was man durch einsetzen nachprüfen kann.
Dies ist ein Sonderfall der allgemeinen Lösung eines linearen Differentialgleichungssystems, wenn die Koeffizientenmatrix nicht diagonalisierbar ist.

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]