www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - inf(C U D)
inf(C U D) < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inf(C U D): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Do 27.11.2008
Autor: Fuchsschwanz

Hallo!

ICh habe versucht zu beweisen, dass das Inf(CUD)=min (Inf(C),Inf(D)) ist. Dabei sind C,D Teilmengen der reellen Zahlen.

Bin dabei folgendermaßen vorgegangen:

Sei f=inf(C U D). D.g. f<=C U D,also f<=C oder f<=D, also f=infC oder f=infD. Zwei Fälle zu unterscheiden:
1)
Sei C<D: dann gilt f=infC=inf(CUD)
2) Sei D<C D.g. f=infD=inf CUD, also gilt inf(CUD)=min(infC,infD) Geht das so, andere Richtung mach ich gleich..

Danke

        
Bezug
inf(C U D): Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Do 27.11.2008
Autor: Gnometech

Grüße!

Nein, das geht so leider nicht. Du vergleichst munter Elemente von [mm] $\IR$ [/mm] mit Teilmengen und auch Teilmengen untereinander... was soll $C < D$ denn bedeuten?

Versuche lieber, die Definition zu verwenden. Das Infimum einer Menge ist die größte untere Schranke. Zeige also zunächst, dass die Zahl

$x := [mm] \mbox{min}\{ \inf C, \inf D \}$ [/mm]

eine untere Schranke von $C [mm] \cup [/mm] D$ ist und zeige dann, dass es die größte solche ist, indem Du beweist, dass für jede weitere untere Schranke $y$ von $C [mm] \cup [/mm] D$ gelten muss $y [mm] \leq [/mm] x$.

Viel Erfolg dabei!

Lars

Bezug
                
Bezug
inf(C U D): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Do 27.11.2008
Autor: Fuchsschwanz

$ x := [mm] \mbox{min}\{ \inf C, \inf D \} [/mm] $
dies bedeutet doch, dass x=inf C oder x=inf D ist, je nachdem ob inf C<infD oder infC>inf D ist, oder?  mir ist die definition des Minimums glaub ich einfach nicht hundertpro klar...

Bezug
                        
Bezug
inf(C U D): Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Do 27.11.2008
Autor: Gnometech


> [mm]x := \mbox{min}\{ \inf C, \inf D \}[/mm]
>  dies bedeutet doch,
> dass x=inf C oder x=inf D ist, je nachdem ob inf C<infD
> oder infC>inf D ist, oder?  mir ist die definition des
> Minimums glaub ich einfach nicht hundertpro klar...

Doch, das stimmt soweit schon. Jetzt ist mir auch klar, was Du mit $C < D$ gemeint hast...

Du brauchst hier aber keine Fallunterscheidung. Wenn $x$ wie oben definiert ist, dann gilt $x [mm] \leq \inf [/mm] C$ und $x [mm] \leq \inf [/mm] D$ und das sollte reichen um zu zeigen, dass $x$ untere Schranke ist.

Und für jede weitere untere Schranke $y$ von $C [mm] \cup [/mm] D$ gilt ebenso $y [mm] \leq \inf [/mm] C$ und $y [mm] \leq \inf [/mm] D$ und damit auch $y [mm] \leq [/mm] x$ und das ist schon alles. :-)

Alles klar?

Lars

Bezug
                                
Bezug
inf(C U D): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:50 So 30.11.2008
Autor: Fuchsschwanz

Hmmm ich bin jetzt beim ersten Teil des Beweises und habe geschrieben, x<=inf C und x<= inf D. Kann ich dann sagen, x<=CUD und damit untere Schranke?

für den zweiten Tewil würde ich nun annehmen, dass es eine größere untere Schranke gibt.

Bezug
                                        
Bezug
inf(C U D): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Di 02.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]