www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - ideale münze
ideale münze < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ideale münze: kontrolle
Status: (Frage) beantwortet Status 
Datum: 13:26 So 07.09.2008
Autor: mef

Aufgabe
Eine ideale münze wird zehnmal geworfen. bestimme die wahrscheinlichkeit für höchstens dreimal (mindestens fünfmal; mehr als achtmal) wappen

hallo,
ich hab alle drei aufgaben berechnet und würde sie kontrollieren lassen:

[mm] P(X\le [/mm] 3)= [mm] \summe_{i=0}^{3}*\vektor{10 \\ i} *\bruch{1}{6}^{i} [/mm]  * [mm] \bruch{5}{6}^{10-i} [/mm]
= 0,930271574

[mm] P(X\ge [/mm] 5)=1- [mm] \summe_{i=0}^{4}*\vektor{10 \\ i} *\bruch{1}{6}^{i} [/mm]  * [mm] \bruch{5}{6}^{10-i} [/mm]
=0,01546

P(X>8)= 1- [mm] \summe_{i=0}^{8}*\vektor{10 \\ i} *\bruch{1}{6}^{i} [/mm]  * [mm] \bruch{5}{6}^{10-i} [/mm]
= 8,43 [mm] *10^{-7} [/mm]

vielen dank im voraus
gruß mef

        
Bezug
ideale münze: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 So 07.09.2008
Autor: luis52


> Eine ideale münze wird zehnmal geworfen. bestimme die
> wahrscheinlichkeit für höchstens dreimal (mindestens
> fünfmal; mehr als achtmal) wappen
>  hallo,
>  ich hab alle drei aufgaben berechnet und würde sie
> kontrollieren lassen:
>  
> [mm]P(X\le[/mm] 3)= [mm]\summe_{i=0}^{3}*\vektor{10 \\ i} *\bruch{1}{6}^{i}[/mm]
>  * [mm]\bruch{5}{6}^{10-i}[/mm]
>  = 0,930271574
>  
> [mm]P(X\ge[/mm] 5)=1- [mm]\summe_{i=0}^{4}*\vektor{10 \\ i} *\bruch{1}{6}^{i}[/mm]
>  * [mm]\bruch{5}{6}^{10-i}[/mm]
>  =0,01546
>  
> P(X>8)= 1- [mm]\summe_{i=0}^{8}*\vektor{10 \\ i} *\bruch{1}{6}^{i}[/mm]
>  * [mm]\bruch{5}{6}^{10-i}[/mm]
>  = 8,43 [mm]*10^{-7}[/mm]
>  
> vielen dank im voraus
>  gruß mef

Hallo

[notok] Rechne mit 1/2 statt 1/6 ...

vg Luis

Bezug
                
Bezug
ideale münze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 So 07.09.2008
Autor: mef

ich verstehe nicht
wieso denn mit 1/2
beim würfel macht man es doch immer mir 1/6

Bezug
                        
Bezug
ideale münze: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 So 07.09.2008
Autor: M.Rex

Hallo

Hier bei der Münze gibt es aber nur zwei Seiten, Kopf und Zahl.

Und wenn du beim Würfel die Unterscheidung gerade Zahl/Ungerade Zahl machst, hast du auch für jeder der Seiten die W-Keit [mm] \bruch{1}{2}. [/mm]
Ist dagegen die W.keit für eine 5 oder 6 gesucht, ist diese [mm] \bruch{2}{6}=\bruch{1}{3} [/mm]

Marius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]