www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - hyperbolische Abstand
hyperbolische Abstand < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hyperbolische Abstand: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:20 Mo 25.01.2016
Autor: knowhow

Aufgabe
Zeige über IH:

1) Ist die Gerade L durch [mm] w_0\not=w_1 \in [/mm] IH ein Halbkreis, der [mm] \IR [/mm] in a'<a trifft, so ist

[mm] DV(w_0,a,w_1,a')=\bruch{a-w_0}{a'-w_0}:\bruch{a-w_1}{a'-w_1} [/mm] reell und positiv

Ist die GErade parallel zur Imaginärachse durch [mm] a\in \IR, [/mm] so gilt [mm] DV(w_0,a,w_1,a'=\infty)=\bruch{w_0-a}{w_1-a} \in \IR_{>0} [/mm]

2) Für [mm] w_0\not=w_1 [/mm] ist [mm] d(w_0,w_1):=|ln DV(w_0,a,w_1,a')|, [/mm] a,a' wie in 1), symmetrisch in [mm] w_0, w_1 [/mm] und a,a'. Liegen [mm] w_0=a+it_0, w_1=a+it_1 [/mm] auf Parallelen zur Imaginärachse durch a, so ist [mm] d(w_0,w_1)=|ln\bruch{t_0}{t_1}|. [/mm]

3) [mm] d(w_0,w_1)=d(f(w_0),f(w_1)) [/mm] für [mm] f\in PSl_2(\IR) [/mm]

Hallo zusammen,

zu 1) [mm] \limes_{a'\rightarrow\infty} DV(w_0,a,w_1,a')=\limes_{a'\rightarrow\infty} \bruch{a-w_0}{a'-w_0}:\bruch{a-w_1}{a'-w_1} =\limes_{a'\rightarrow\infty} \bruch{a-w_0}{a'-w_0}\cdot \bruch{a'-w_1}{a-w_1}=\limes_{a'\rightarrow\infty} \bruch{a'-w_1}{a'-w_0}\cdot \bruch{a-w_0}{a-w_1}=\limes_{a'\rightarrow\infty} \bruch{a'-w_1}{a'-w_0}\cdot \bruch{a-w_0}{a-w_1}=\limes_{a'\rightarrow\infty} \bruch{a'(1-\bruch{w_1}{a'})}{a'(1-\bruch{w_0}{a'})}\cdot \bruch{a-w_0}{a-w_1}=\limes_{a'\rightarrow\infty} \bruch{1-\bruch{w_1}{a'}}{1-\bruch{w_0}{a'}}\cdot \bruch{a-w_0}{a-w_1} [/mm]

und [mm] \bruch{w_1}{a'}=0 [/mm] und [mm] \bruch{w_0}{a'} [/mm] für [mm] a'\rightarrow \infty [/mm] und somit habe wir dann

[mm] ...=\bruch{a-w_0}{a-w_1} [/mm]

wie zeige ich jetzt das [mm] DV(w_0,a,w_1,a')=\bruch{a-w_0}{a'-w_0}:\bruch{a-w_1}{a'-w_1} [/mm] reell und positiv ist?

ich wäre so an die aufgabe herangegangen:
[mm] DV(w_0,a,w_1,a')=\bruch{a-w_0}{a'-w_0}:\bruch{a-w_1}{a'-w_1} =\bruch{(a-w_0)(a'+w_0)}{(a'-w_0)(a'+w_0)}:\bruch{(a-w_1)(a'+w_1)}{(a'-w_1)(a'+w_1)} =\bruch{aa'+w_0(a-a')+w_0^2}{a'^2+w_0^2}:\bruch{aa'+w_1(a-a')+w_1^2}{a'^2+w_1^2} [/mm]

Ich denke dass diese Ansatz falsch.

zu 2) da habe ich leider auch nur den 2. Teil herausbekommen:

[mm] DV(w_0,a,w_1,a'=\infty)=\bruch{w_0-a}{w_1-a}=|ln(\bruch{a+it_0-a}{a+it_1-a}=|ln\bruch{it_0}{it_1}|=|ln\bruch{t_0}{t_1}| [/mm]

kann mir da jemand einen tipp gegeben für [mm] w_0 \not= w_1? [/mm]

zu 3) [mm] d(w_0,w_1)=|ln DV(w_0,a,w_1,a')|=|ln(\bruch{a-w_0}{a'-w_0}:\bruch{a-w_1}{a'-w_1})|=|\bruch{a-w_0}{a'-w_0}\cdot\bruch{a'-w_1}{a-w_1}|=|ln(\bruch{a-w_0}{a'-w_0})+ln(\bruch{a'-w_1}{a-w_1})|=|ln(f(w_0))+ln(f(w_1))|=|ln(f(w_0)\cdot f(w_1))|? [/mm]

es scheint nicht zu stimmen bzw. ich bin da bei diesem teil überfragt.

Ich bin für jeden Tipp dankbar, das zur weiterlösen diese aufgabe beiträgt.

        
Bezug
hyperbolische Abstand: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 27.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]