www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - gleichmäßige Stetigkeit
gleichmäßige Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßige Stetigkeit: Idee
Status: (Frage) beantwortet Status 
Datum: 19:30 Di 17.01.2006
Autor: charly1607

Aufgabe 1
Untersuchen Sie die folgenden Funktionen auf gleichmäßige Stetigkeit:
g: [mm] \IR\backslash \{0\} [/mm] --> [mm] \IR [/mm] , x [mm] \mapsto [/mm] 1/x²

Aufgabe 2
die gleiche Aufgabenstellung mit folgender Funktion:
[mm] \IR [/mm] --> [mm] \IR [/mm] , x [mm] \mapsto [/mm] |x|

hallo alle miteinander.
ich habe keine ahnung, wie ich das angehen soll, ich meine mit dem epsilon und so. kann mir daas mal jemand erklären und ein paar tipps zur lösung geben.
wäre echt nett, schon jetzt mal vielen dank
lg charly1607

        
Bezug
gleichmäßige Stetigkeit: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 13:01 Mi 18.01.2006
Autor: Julius

Hallo Charly!

Bei Aufgabe 1 muss man ziemlich rumfrickeln, um zu zeigen, dass die Funktion nicht gleichmäßig stetig ist, das ist mir jetzt zu aufwändig.

Aufgabe 2 ist aber einfach: Nach der Dreiecksungleichung gilt:

(*) $||x| - |y|| [mm] \le [/mm] |x-y|$.

D.h. ist [mm] $\varepsilon>0$ [/mm] beliebig vorgegeben, dann wähle [mm] $\delta:=\varepsilon$, [/mm] und für alle $x,y [mm] \in \IR$ [/mm] mit $|x-y| < [mm] \delta$ [/mm] folgt:

$||x| - |y|| [mm] \le \varepsilon$ [/mm]

wegen (*), also die gleichmäßige Stetigkeit.

Liebe Grüße
Julius

Bezug
        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Mi 18.01.2006
Autor: SEcki


>  g: [mm]\IR\backslash \{0\}[/mm] --> [mm]\IR[/mm] , x [mm]\mapsto[/mm] 1/x²

Direkt zeigen: Für jedes [m]\delta[/m] exitieren [m]x_1,x_2\in (0,\delta][/m] mit [m]g(x_1)-g(x_2)>1[/m]. Dies folgt mehr oder minder direkt daraus, dass die Funktion an dieser Stelle gegen Unendlich bahupt. das müsstest du ausformulieren.

Indirket: wäre sie glm. stetig, so könnte man sie auf [m]\IR[/m] stetig fortsetzen, das geht aber nicht.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]