www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - gleichheit von mengen prim.rek
gleichheit von mengen prim.rek < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichheit von mengen prim.rek: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:57 So 12.11.2006
Autor: AriR

Aufgabe
Es sei F eine Menge zahlentheoretischer Funktionen. Wir definieren die
Menge PRFT(F) von primitiv rekursiven Funktionstermen in F wie folgt:
 Alle Grundfunktionszeichen sind in PRFT(F).
 Für jedes [mm] f\inF [/mm] ist ein Name [mm] [u]f[\u] [/mm] in PRFT(F); die Stellenzahl von [mm] [u]f[\u] [/mm] ist die von f.
 PRFT(F) ist abgeschlossen unter Sub und Rec.
Weiter sei PRF(F) der primitiv rekursive Abschluß von F, d. h. die Menge der von
Termen aus PRFT(F) dargestellten Funktionen, wobei [mm] [u]f[\u] [/mm] für [mm] f\inF [/mm] natürlich f darstellt.
Zeigen Sie, dass für [mm] F\subseteq [/mm] PRF bereits
PRF(F) = PRF
gilt.  

hat da jemand eine idee wie man das machen kann?

bestimmt muss man zeigen: 1. [mm] PRF(F)\subseteq [/mm] PRF
                          2. [mm] PRF\subseteq [/mm] PRF(F)

nur wie genau machen ich das?
zu1.)
ich denke mal nimmt sich ein [mm] f\in [/mm] PRF(F) für dieses gelten dann ja die 3 oben aufgeführten punkte, dann folt doch schon direkt, dass f eine prim.rek funktion ist oder nicht?

zu2.)

das wäre doch analog oder?

irgendwie kommt mir das etwas zu einfach vor, also ist da sicher was falsch +g+

kann mir BITTE jemand weiterhelfen?

gruß ari

        
Bezug
gleichheit von mengen prim.rek: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 15.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]