www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - geometrische vert./ E(X)
geometrische vert./ E(X) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geometrische vert./ E(X): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Fr 30.05.2008
Autor: Igor1

Hallo,

ich habe eine Frage zu der folgenden Internetseite

[]wikipedia -geometrische Verteilung- Erwartungswert

Beim Punkt 2.1 des Inhaltsverzeichnisses dort (Eigenschaften - Erwartungswert) ist mir nicht klar , was
[mm] \bruch{d}{d(1-p)} [/mm] in der Herleitungsgleichung ( die zweite Teilgleichung) bedeutet ...?

Danke schön

Gruss
Igor

        
Bezug
geometrische vert./ E(X): Direkter Weg
Status: (Antwort) fertig Status 
Datum: 12:46 Sa 31.05.2008
Autor: Infinit

Hallo Igor,
mit diesem Ausdruck ist der Differentialquotient in Hinblick auf das Summenargument gemeint. Da die Erwartungswertbildung ein linearer Vorgang ist, kann man so was machen. Es ist jedoch aus meiner Sicht recht tricky, denn auf diese Idee kommt man eigentlich nur, wenn man das Ergebnis schon kennt.
Es gibt auch einen direkten Weg und die paar dazugehörigen Zeilen an Rechnung findest Du []hier.
Viele Grüße,
Infinit

Bezug
        
Bezug
geometrische vert./ E(X): Antwort
Status: (Antwort) fertig Status 
Datum: 07:08 So 01.06.2008
Autor: felixf

Hallo Igor

> ich habe eine Frage zu der folgenden Internetseite
>
> []wikipedia -geometrische Verteilung- Erwartungswert
>  
> Beim Punkt 2.1 des Inhaltsverzeichnisses dort
> (Eigenschaften - Erwartungswert) ist mir nicht klar , was
> [mm]\bruch{d}{d(1-p)}[/mm] in der Herleitungsgleichung ( die zweite
> Teilgleichung) bedeutet ...?

Das ist sozusagen die Ableitung nach der Unbestimmten $1 - p$: wenn du die Gleichung so umschreibst, dass du $1 - p$ durch $y$ ersetzt, dann steht da [mm] $\frac{d}{d y} \sum_{k=1}^\infty y^k [/mm] = [mm] \sum_{k=1}^\infty [/mm] k [mm] y^{k-1}$. [/mm]

Soweit ok?

Beim darauf folgenden Gleichheitszeichen ersetzt man die Ableitung nach $1 - p$ dann durch eine Ableitung nach $p$: das ist sozusagen die Kettenregel. Sagen wir mal du hast eine Funktion $f(y)$, und du hast $y = 1 - p$. Du weisst jetzt, dass [mm] $\frac{d}{d y}f(y) [/mm] = g(y)$ ist. Also ist [mm] $\frac{d}{d p} [/mm] f(y) = [mm] \frac{d}{d p} [/mm] f(1 - p) = f'(1 - p) (1 - p)' = -f'(1 - p)$. Wenn du das jetzt auf $f(y) = [mm] \sum_{k=1}^\infty y^k [/mm] = [mm] \sum_{k=0}^\infty y^k [/mm] - 1$ anwendest, folgt daraus genau das was da steht.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]